The effect of pore and surface characteristics of activated carbon produced by coal through N2 and H2O vapor/H3PO4 activation on a single step for CH4 adsorption in the low pressure

Author(s):  
Atakan Toprak
2011 ◽  
Vol 65 (9) ◽  
pp. 1423-1426 ◽  
Author(s):  
José Miguel González-Domínguez ◽  
Carmen Fernández-González ◽  
María Alexandre-Franco ◽  
Alejandro Ansón-Casaos ◽  
Vicente Gómez-Serrano

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Lingjie Liu ◽  
Min Ji ◽  
Fen Wang

Coconut granular activated carbon (CGAC) was modified by impregnating with ZnCl2solution to remove nitrate from aqueous solutions. Sorption isotherm and kinetic studies were carried out in a series of batch experiments. Nitrate adsorption of both ZnCl2-modified CGAC and CGAC fitted the Langmuir and Freundlich models. Batch adsorption isotherms indicated that the maximum adsorption capacities of ZnCl2-modified CGAC and CGAC were calculated as 14.01 mgN·g−1and 0.28 mgN·g−1, respectively. The kinetic data obtained from batch experiments were well described by pseudo-second-order model. The column study was used to analyze the dynamic adsorption process. The highest bed adsorption capacity of 1.76 mgN·g−1was obtained by 50 mgN·L−1inlet nitrate concentration, 20 g adsorbents, and 10 ml·min−1flow rate. The dynamic adsorption data were fitted well to the Thomas and Yoon–Nelson models with coefficients of correlationR2 > 0.834 at different conditions. Surface characteristics and pore structures of CGAC and ZnCl2-modified CGAC were performed by SEM and EDAX and BET and indicated that ZnCl2had adhered to the surface of GAC after modified. Zeta potential, Raman spectra, and FTIR suggested the electrostatic attraction between the nitrate ions and positive charge. The results revealed that the mechanism of adsorption nitrate mainly depended on electrostatic attraction almost without any chemical interactions.


Author(s):  
S. Manocha ◽  
Parth Joshi ◽  
Amit Brahmbhatt ◽  
Amiya Banerjee ◽  
Snehasis Sahoo ◽  
...  

In the present work, a one step carbon activation process was developed by stabilized poly-blend. It is carbonized in nitrogen atmosphere and activated in steam in one step for known interval of times to enhance the surface area and develop interconnected porosity. The weight-loss behavior during steam activation of stabilized poly-blend at different temperatures, surface area and pore size distribution were studied to identify the optimum synthesis parameters. The results of surface characteristics were compared with those of activated carbon prepared by carbonization and activation in two steps. It was found that activation temperature has profound effect on surface characteristics. As activation temperature was raised from 800 °C to 1150 °C, surface area of activated carbon increased about three times. In addition to surface area, average pore diameter also increases with increasing activation temperature. Thus, activated carbon with high percentage of porosity and surface area can be developed by controlling the activation temperature during activation process.


2017 ◽  
Vol 70 ◽  
pp. 374-381 ◽  
Author(s):  
Xinhui Duan ◽  
C. Srinivasakannan ◽  
Xin Wang ◽  
Fei Wang ◽  
Xinyi Liu

2021 ◽  
Vol 1162 ◽  
pp. 65-73
Author(s):  
Rakhmawati Farma ◽  
Ona Lestari ◽  
Erman Taer ◽  
Apriwandi ◽  
Minarni ◽  
...  

Heavy metal such as Cu, Fe, and Zn are the most serious contributers to environmental problems. The removal of heavy metal from the environment is the research interest nowdays. The adsorption of Cu, Fe and Zn from wastewater was investigated with various activated carbons as adsorbents. The activated carbons were produced from oil palm leaves by using multi-activation methods. The H3PO4, NaOH, ZnCl2 and KOH were chosen as chemical activating agents. Batch adsorption experiment was used to test the ability of activated carbon to remove Cu, Fe, and Zn from wastewater. The surface characteristics of activated carbon were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FTIR), and nitrogen adsorption-desorption isotherms. The Activated carbons were able to purify wastewater with a maximum turbidity level of 2.83 NTU. The AC-H3PO4 activated carbon showed the highest absorbability of Cu metal as 91.540%, while the highest absorbabilities of Zn and Fe metals were indicated by AC-KOH activated carbon of 22.853% and 82.244% absorption respectively. Therefore, these results enable the oil palm leaves to become a high potential for activated carbon as removal the heavy metals.


Sign in / Sign up

Export Citation Format

Share Document