scholarly journals Development of Activated Carbon Using One Step Carbonization and Activation Reaction by Polymer Blend Method

Author(s):  
S. Manocha ◽  
Parth Joshi ◽  
Amit Brahmbhatt ◽  
Amiya Banerjee ◽  
Snehasis Sahoo ◽  
...  

In the present work, a one step carbon activation process was developed by stabilized poly-blend. It is carbonized in nitrogen atmosphere and activated in steam in one step for known interval of times to enhance the surface area and develop interconnected porosity. The weight-loss behavior during steam activation of stabilized poly-blend at different temperatures, surface area and pore size distribution were studied to identify the optimum synthesis parameters. The results of surface characteristics were compared with those of activated carbon prepared by carbonization and activation in two steps. It was found that activation temperature has profound effect on surface characteristics. As activation temperature was raised from 800 °C to 1150 °C, surface area of activated carbon increased about three times. In addition to surface area, average pore diameter also increases with increasing activation temperature. Thus, activated carbon with high percentage of porosity and surface area can be developed by controlling the activation temperature during activation process.

2015 ◽  
Vol 75 (11) ◽  
Author(s):  
Farid Nasir Ani ◽  
Muhammad Mat Junoh ◽  
Zarina Ab Muis

A study was conducted on Mukah coal using fixed bed reactor and one step activation with varying resident time and temperatures. CO2 gas was used for the activation process. The one-step continuous process comprised of carbonization and activation processes. The burn off analysis for 80 grams of Mukah coal was done to obtain volatiles removal at various carbonization temperatures. The results obtained showed that at 900oC, the percentages of burn off and the remaining weight were 42.2% and 57.8% respectively. Micrometrics ASAP2010 was used to analyze Mukah coal activated carbon in obtaining the BET surface area, the micropore area, and the average pore diameter. The results obtained indicated that activation at 900oC gave the highest BET surface area with 675m2/g, while the highest micropore area with 427 m2/g was obtained at 800oC. In addition, the average pore diameter range was within 18.5 to 26.4 A. 


2018 ◽  
Vol 5 (7) ◽  
pp. 171578 ◽  
Author(s):  
P. Ravichandran ◽  
P. Sugumaran ◽  
S. Seshadri ◽  
Altaf H. Basta

This work deals with optimizing the conditions of pyrolysis and type of activator to upgrade the use of Casuarina equisetifolia fruit waste (CFW) as available and a potential precursor, in production of activated carbon (AC). In this respect, the route of activation was carried out through one- and two-step pyrolysis processes, using different chemical activating agents, such as H 3 PO 4 , KOH and ZnCl 2 . The performance of the CFW-based ACs is assessed by estimating the physico-chemical characteristics (pH, electrical conductivity, bulk density and hardness), surface morphology and scanning electron microscopy, together with carbon yield, surface area and adsorption performance of pollutants in aqueous medium (methylene blue, iodine and molasses colour removal efficiencies). The results show that the two-step activation process was more effective than one-step activation for providing high adsorption performance CFW-based ACs. The maximum Brunauer–Emmett–Teller surface area 547.89 m 2  g −1 was produced by using H 3 PO 4 activating agents, and applied two-step pyrolysis. According to the American Water Work Association and based on bulk density of the investigated ACs, we recommend that most of produced ACs are suitable for treating waste water.


2020 ◽  
Vol 10 (1) ◽  
pp. 1-6
Author(s):  
Rahma Joni ◽  
Syukri Syukri ◽  
Hermansyah Aziz

Studi karakteristik karbon aktif dari cangkang buah ketaping (Terminalia Catappa) sebagai elektroda superkapasitor telah diteliti. Karbon aktif dari cangkang buah ketaping (CBK) disiapkan dengan proses karbonisasi pada suhu 400oC dan Proses aktivasi KOH pada suhu 800oC di bawah aliran gas N2. Karbon aktif CBK memiliki kandungan karbon dengan massa atomik sebesar 97,52%. Karbon aktif CBK memiliki struktur amorf dengan dua buah puncak yang lebar pada sudut 2θ yaitu 24,93o dan 42,93o yang bersesuaian dengan bidang (002) dan (100). Karbon aktif CBK yang dihasilkan memiliki pola serapan dengan jenis ikatan OH, C-H, C=O, dan C=C. Adanya ikatan OH dan C=O menunjukkan bahwa arang aktif yang dihasilkan cenderung bersifat lebih polar. Morfologi permukaan karbon aktif CBK menunjukan distribusi ukuran pori yang merata dan luas permukaan yang besar. Luas permukaan spesifik karbon aktif dari CBK adalah 799,892 m2×g-1 dengan volume total pori 0,080 cm3×g-1 dan jari-jari pori rata-rata 1,9072 nm. Kapasitansi spesifik dari karbon aktif dari CBK adalah sebesar 125,446 F×g-1. Studies on the characteristics of activated carbon from ketaping fruit shells (Terminalia Catappa) as supercapacitor electrodes have been studied. Activated carbon from ketaping fruit shells (KFS) prepared by carbonization process at 400oC and the KOH activation process is carried out at 800oC under N2 gas flow. Activated carbon KFS has a carbon content with 97.52% of atomic mass. Activated carbon KFS has an amorphous structure with two wide peaks at an angle of 2θ 24.93ᵒ and 42.93ᵒ corresponding to the plane (002) and (100). Activated carbon KFS produced has an absorption pattern with OH, C-H, C = O, and C = C bond types. The presence of OH and C = O bonds indicates that the activated charcoal produced tends to be more polar. The surface morphology of activated carbon KFS shows an even distribution of pore size and large surface area. The specific surface area of activated carbon KFS is 799.892 m2×g-1 with a total pore volume 0.080 cm3×g-1 and an average pore radius of 1.9072 nm. The specific capacitance value of activated carbon KFS is 125.444 F×g-1.Keywords: Ketaping, Activated Carbon, Supercapacitor, Activator, Capacitance. 


2021 ◽  
Vol 1045 ◽  
pp. 59-66
Author(s):  
Dewa Ngakan Ketut Putra Negara ◽  
Tjokorda Gde Tirta Nindhia ◽  
Lusiana ◽  
I Made Widiyarta ◽  
I Made Astika ◽  
...  

The activation process is the final stage in the manufacturing of activated carbon that can be carried out physically or chemically. This paper focuses on characterizing the surface properties of activated carbons from Gigantochloa verticillata bamboo that are chemically activated at 750°C under different impregnation ratios (IRs) of 1:1, 2:1, and 3:1. The activated carbons produced were denoted as IR1-AC, IR2-AC, and IR3-AC for impregnation ratios of 1:1, 2:1, and 3:1, respectively. Characterizations include TGA, SEM, and adsorption isotherm tests. The results of the research show that variation of the impregnation ratio yielded fluctuated content of proximate elements and surface properties of activated carbons. The highest fixed carbon of 75.69% and the lowest ash of 13.10% were obtained by IR2-AC. The highest surface area of 511.10 m2/g and pore volume of 0.561 cc/g was obtained by IR3-AC and IR2-AC, respectively. The activated carbon pores are distributed in micropores and mesopores areas with average pore diameters of 1.245, 2.494, and 1.984 nm for IR1-AC, IR2-AC, and IR3-AC, respectively. The existence of the pores can be found on the surface morphology of activated carbons.


2010 ◽  
Vol 62 (11) ◽  
pp. 2637-2646 ◽  
Author(s):  
A. B. Namazi ◽  
C. Q. Jia ◽  
D. G. Allen

The goal of this work is to establish the technical feasibility of producing activated carbon from pulp mill sludges. KOH chemical activation of four lignocellulosic biomass materials, two sludges from pulp mills, one sludge for a linerboard mill, and cow manure, were investigated experimentally, with a focus on the effects of KOH/biomass ratio (1/1, 1.5/1 and 2/1), activation temperature (400–600°C) and activation time (1 to 2 h) on the development of porosity. The activation products were characterized for their physical and chemical properties using a surface area analyzer, scanning electron microscopy and Fourier transform infrared spectroscopy. Experiments were carried out to establish the effectiveness of the lignocellulosic biomass-derived activated carbon in removing methylene blue (MB), a surrogate of large organic molecules. The results show that the activated carbon are highly porous with specific surface area greater than 500 m2/g. The yield of activated carbon was greater than the percent of fixed carbon in the dry sludge, suggesting that the activation process was able to capture a substantial amount of carbon from the organic matter in the sludge. While 400°C was too low, 600°C was high enough to sustain a substantial rate of activation for linerboard sludge. The KOH/biomass ratio, activation temperature and time all play important roles in pore development and yield control, allowing optimization of the activation process. MB adsorption followed a Langmuir isotherm for all four activated carbon, although the adsorption capacity of NK-primary sludge-derived activated carbon was considerably lower than the rest, consistent with its lower specific surface area.


2020 ◽  
Vol 15 (2) ◽  
pp. 79-89
Author(s):  
Sriatun Sriatun ◽  
Shabrina Herawati ◽  
Icha Aisyah

The starting material for activated carbon was biomass from teak woodcutting, which consists of 47.5% cellulose, 14.4% hemicellulose, and 29.9% lignin. The surface area and iodine number of activated carbons are the factors determining the adsorption ability. This study aims to determine the effect of the activator type on activated carbon characters and test the absorption ability for waste cooking oil. The synthesis stages include carbonization, chemical activation, and then physics activation. The activation process consists of two steps. Firstly, the chemical activation via adding H2SO4, and H3PO4 at room temperature for 24 hours, the second, physical activation by heating at various temperatures of 300, 400, and 500 °C for two hours. The characterizations of activated carbon include water content, ash content, iodine number, functional groups, and surface area. Furthermore, the activated carbon was used as an adsorbent for waste cooking oil for 60 minutes at 100 °C with a stirring of 500 rpm. The results were analyzed using UV-Vis spectrophotometry at a maximum wavelength of 403 nm. The iodine numbers of activated carbon ranged 481.1-1211.4 mg/g and 494.8-1204 mg/g for H3PO4 and H2SO4, respectively.Activated carbon with H3PO4 of 15% and an activation temperature of 400 °C has the highest surface area of 445.30 m2/g.  The H2SO4 dan H3PO4 activators can be used to improve the quality of activated carbon in absorbing dyes in waste cooking oil, where the optimum concentration is 10-15% (v/v). The H3PO4 activator tends to produce a higher bleaching percentage than H2SO4. 


BioResources ◽  
2017 ◽  
Vol 12 (4) ◽  
pp. 8078-8092
Author(s):  
Toni Varila ◽  
Davide Bergna ◽  
Riikka Lahti ◽  
Henrik Romar ◽  
Tao Hu ◽  
...  

The process for producing activated carbon from peat was optimized. The peat was impregnated with different ratios of ZnCl2, and the impregnated biomass was activated at different temperatures. The specific surface area, pore size distribution, total carbon content, and yield of the activated carbon were investigated. The best results for the specific surface area and mesoporosity of the activated peat were obtained by using a high impregnation ratio (2) and high activation temperature (1073 K). Highly porous activated carbon was produced that had a specific surface area of approximately 1000 m2/g and total pore volume that was higher than 0.5 cm3/g for most samples. The activated carbon had a high degree of mesoporosity. The adsorptive properties of the activated carbon were determined with methylene blue and orange II dyes.


Author(s):  
V. Sivanandan Achari ◽  
A. S. Rajalakshmi ◽  
S. Jayasree ◽  
Raichel Mary Lopez

In this study, a new series of coconut shell based granular activated carbons (GAC) are prepared by impregnating with zirconium ions as zirconyl chloride and activated under superheated steam. These carbons are designated with activation temperature/ conditions as GAC 383 (activated at 383K), GACO 383 (HNO3 oxidised), GACZR 1273 (ZrOCl2 activated at 1273K) and GACOZR 1273 (HNO3 oxidised, ZrOCl2 activated at 1273K). Surface characteristics of these carbons are evaluated using Boehm titration methods, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction techniques (XRD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The pore volume and the respective specific surface area of each carbon are determined by BET, I plot, Langmuir, Freundlich, and Dubinin-Radushkevich isotherms using N2 adsorption data at 77K. Analysis shows that zirconium ion enhances the surface area and porosity of granular activated carbon. The adsorption characteristics of newly prepared GAC are tested by solid-liquid equilibria using phenol as adsorbate. Equilibrium phenol adsorption data fitted to standard isotherm models of Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) equations. Adsorption constants and parameters indicate that zirconium impregnated granular activated carbons are relatively more efficient for the removal of phenol than the native carbon used.


2015 ◽  
Vol 5 (1) ◽  
pp. 24 ◽  
Author(s):  
Mohd Adib Yahya ◽  
C. W. Zanariah C. W. Ngah ◽  
M. A. Hashim ◽  
Z. Al-Qodah

<p class="1Body">This study investigates the effect of temperature and impregnation ratio on the physicochemical properties of activated carbon prepared from agricultural waste; desiccated coconut residue (DCR) by chemical activation using sodium hydroxide (NaOH). DCR sample was first carbonized at three different temperatures for 1 hour at 400°C, 500°C, and 600°C respectively. The resulting chars were impregnated with NaOH at three different impregnation ratio; 1:1, 1:2, and 1:3 respectively and activated under nitrogen atmosphere for 1 hour at three different temperatures based on its carbonization temperature. The specific surface area was strongly affected by impregnation ratio in which increased with impregnation ratio. The specific surface area also increased with temperature but then decreased at highest desired temperature.</p>


Author(s):  
V. Sivanandan Achari ◽  
A. S. Rajalakshmi ◽  
S. Jayasree ◽  
Raichel Mary Lopez

In this study, a new series of coconut shell based granular activated carbons (GAC) are prepared by impregnating with zirconium ions as zirconyl chloride and activated under superheated steam. These carbons are designated with activation temperature/ conditions as GAC 383 (activated at 383K), GACO 383 (HNO3 oxidised), GACZR 1273 (ZrOCl2 activated at 1273K) and GACOZR 1273 (HNO3 oxidised, ZrOCl2 activated at 1273K). Surface characteristics of these carbons are evaluated using Boehm titration methods, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction techniques (XRD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The pore volume and the respective specific surface area of each carbon are determined by BET, I plot, Langmuir, Freundlich, and Dubinin-Radushkevich isotherms using N2 adsorption data at 77K. Analysis shows that zirconium ion enhances the surface area and porosity of granular activated carbon. The adsorption characteristics of newly prepared GAC are tested by solid-liquid equilibria using phenol as adsorbate. Equilibrium phenol adsorption data fitted to standard isotherm models of Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) equations. Adsorption constants and parameters indicate that zirconium impregnated granular activated carbons are relatively more efficient for the removal of phenol than the native carbon used.


Sign in / Sign up

Export Citation Format

Share Document