The Phylogeny of Rhizocephalan Parasites of the Genus Heterosaccus using Molecular and Larval Data (Cirripedia: Rhizocephala; Sacculinidae)

2008 ◽  
Vol 54 (2) ◽  
pp. 223-238 ◽  
Author(s):  
Henrik Glenner ◽  
Philip Francis Thomsen ◽  
Alexey V. Rybakov ◽  
Bella S. Galil ◽  
Jens T. Hoeg

Within parasitic barnacles of the family Sacculinidae, the genus Heterosaccus is the third largest, with 12 species infesting various brachyuran hosts throughout the world. As part of an effort to reconstruct rhizocephalan phylogeny we performed an analysis of four species of Heterosaccus and of selected sacculinid and non-sacculinid rhizocephalans. We used both molecular sequence data (16s rDNA and 18s rDNA) and morphological characters from an SEM analysis of the cypris larvae. Using Bayesian methods we obtained a highly supported tree in which the four species of Heterosaccus form a monophylum, whereas both the genus Sacculina and the family Sacculinidae are polyphyletic. The sistergroup to Heterosaccus is a clade consisting of the sacculinids Loxothylacus panopaei and the "classical" rhizocephalan Sacculina carcini. The molecular results found support in cypris morphology, where we identified two distinct synapomorphies for Heterosaccus, both present in male cyprids only: A large flap extending posteriorly from the third antennular segment, and the male-specific aesthetasc on the third segment being reduced to a rudiment or lacking completely. Female cyprids didn't show generic level apomorphies but resembled those of other sacculinid species. No morphological synapomorphies were identified between Heterosaccus, L. panopaei and S. carcini. While larval characters proved to be informative, we conclude that future studies on rhizocephalan taxonomy must rely primarily on molecular data, both to provide an overall phylogenetic framework and to assure an accurate identification of species for biogeographical and other biological purposes.

Phytotaxa ◽  
2014 ◽  
Vol 176 (1) ◽  
pp. 219 ◽  
Author(s):  
ASHA J. DISSANAYAKE ◽  
RUVISHIKA S. JAYAWARDENA ◽  
SARANYAPHAT BOONMEE ◽  
KASUN M. THAMBUGALA ◽  
QING TIAN ◽  
...  

The family Myriangiaceae is relatively poorly known amongst the Dothideomycetes and includes genera which are saprobic, epiphytic and parasitic on the bark, leaves and branches of various plants. The family has not undergone any recent revision, however, molecular data has shown it to be a well-resolved family closely linked to Elsinoaceae in Myriangiales. Both morphological and molecular characters indicate that Elsinoaceae differs from Myriangiaceae. In Elsinoaceae, small numbers of asci form in locules in light coloured pseudostromata, which form typical scab-like blemishes on leaf or fruit surfaces. The coelomycetous, “Sphaceloma”-like asexual state of Elsinoaceae, form more frequently than the sexual state; conidiogenesis is phialidic and conidia are 1-celled and hyaline. In Myriangiaceae, locules with single asci are scattered in a superficial, coriaceous to sub-carbonaceous, black ascostromata and do not form scab-like blemishes. No asexual state is known. In this study, we revisit the family Myriangiaceae, and accept ten genera, providing descriptions and discussion on the generic types of Anhellia, Ascostratum, Butleria, Dictyocyclus, Diplotheca, Eurytheca, Hemimyriangium, Micularia, Myriangium and Zukaliopsis. The genera of Myriangiaceae are compared and contrasted. Myriangium duriaei is the type species of the family, while Diplotheca is similar and may possibly be congeneric. The placement of Anhellia in Myriangiaceae is supported by morphological and molecular data. Because of similarities with Myriangium, Ascostratum (A. insigne), Butleria (B. inaghatahani), Dictyocyclus (D. hydrangea), Eurytheca (E. trinitensis), Hemimyriangium (H. betulae), Micularia (M. merremiae) and Zukaliopsis (Z. amazonica) are placed in Myriangiaceae. Molecular sequence data from fresh collections is required to confirm the relationships and placement of the genera in this family.


Author(s):  
T.S. Kemp

The vast majority of living and fossil mammals are placentals. Today there are about 4,400 species, which are traditionally organised into 18 Orders, with an extra one if the Pinnipedia are separated from the Carnivora, and a twentieth if the recently extinct Malagasy order Bibymalagasia is recognised as such. There have been many attempts to discover supraordinal groupings from amongst these Orders based on morphological characters, though few proposals have been universally accepted. It is only with the advent of increasingly large sets of molecular sequence data in the last few years that a reasonably robust resolution looks imminent, although these contemporary analyses are remarkably and controversially at odds with the traditional ones. Novacek et al. (1988) summarised the then current situation regarding supraordinal classification of placentals, a time at which morphology was still dominant but molecular data was at the threshold of significance. They accepted a basal group Edentata that combined the Xenarthra of the New World with the Pholidota of the Old, based on a few cranial characters, loss of the anterior teeth, and reduction of the enamel of the remaining ones. This left the rest of the living placentals as a monophyletic group Epitheria, sharing such apparently minor characters as the shape of the stapes bone in the ear. They found very little resolution within the Epitheria, and concluded that there was a polychotomy of no less than nine lineages arranged as a ‘star’ phylogeny. No remnant of the previously recognised taxon Ferungulata, created by Simpson (1945) for the Carnivora plus the ungulate orders Artiodactyla, Perissodactyla, Proboscidea, Hyracoidea, Sirenia, and Tubulidentata remained. On the other hand, three supra ordinal taxa of earlier authors did survive. One was Gregory’s (1910) Archonta, consisting of generally conservative forms and by now composed of the Primates, Dermoptera, Scandentia, and Chiroptera, but excluding the Lipotyphla. The second was Glires, originating with Linnaeus (1758) and widely accepted ever since, for the Rodentia and Lagomorpha; Novacek et al. (1988) tentatively placed the Macroscelidea as the sister-group of the Glires. The third supraordinal taxon recognised was, like Glires, well-established if not universally accepted.


Zootaxa ◽  
2019 ◽  
Vol 4642 (1) ◽  
pp. 1-79 ◽  
Author(s):  
JAMES WILDER ORR ◽  
INGRID SPIES ◽  
DUANE E. STEVENSON ◽  
GARY C. LONGO ◽  
YOSHIAKI KAI ◽  
...  

Phylogenetic relationships of snailfishes of the family Liparidae were analyzed on the basis of two sets of molecular sequence data: one from the mitochondrial DNA cytochrome c oxidase subunit one gene (COI) and another from restriction-site associated genome-wide sequences (RADseq). The analysis of COI sequence data from at least 122 species of 18 genera from the Pacific, Atlantic, and Southern oceans resulted in a moderately well-resolved phylogeny among the major clades, albeit with significant polytomy among central clades. Nectoliparis was the sister of all other members of the family, followed by Liparis. Liparis, Careproctus, and Paraliparis were paraphyletic. Liparis was recovered in two closely related clades, with L. fucensis sister of all other liparids except Nectoliparis, and both Careproctus and Paraliparis were each recovered among at least three widely separated clades. The RADseq analysis of 26 species of 11 genera from the eastern North Pacific strongly confirmed the overall results of the COI analysis, with the exception of the paraphyly of Liparis due to the absence of L. fucensis. Our results show that the pelvic disc has been independently lost multiple times and the pectoral-fin girdle has been independently reduced in multiple lineages. 


2014 ◽  
Vol 28 (1) ◽  
pp. 32 ◽  
Author(s):  
Rüdiger Bieler ◽  
Paula M. Mikkelsen ◽  
Timothy M. Collins ◽  
Emily A. Glover ◽  
Vanessa L. González ◽  
...  

To re-evaluate the relationships of the major bivalve lineages, we amassed detailed morpho-anatomical, ultrastructural and molecular sequence data for a targeted selection of exemplar bivalves spanning the phylogenetic diversity of the class. We included molecular data for 103 bivalve species (up to five markers) and also analysed a subset of taxa with four additional nuclear protein-encoding genes. Novel as well as historically employed morphological characters were explored, and we systematically disassembled widely used descriptors such as gill and stomach ‘types’. Phylogenetic analyses, conducted using parsimony direct optimisation and probabilistic methods on static alignments (maximum likelihood and Bayesian inference) of the molecular data, both alone and in combination with morphological characters, offer a robust test of bivalve relationships. A calibrated phylogeny also provided insights into the tempo of bivalve evolution. Finally, an analysis of the informativeness of morphological characters showed that sperm ultrastructure characters are among the best morphological features to diagnose bivalve clades, followed by characters of the shell, including its microstructure. Our study found support for monophyly of most broadly recognised higher bivalve taxa, although support was not uniform for Protobranchia. However, monophyly of the bivalves with protobranchiate gills was the best-supported hypothesis with incremental morphological and/or molecular sequence data. Autobranchia, Pteriomorphia, Heteroconchia, Palaeoheterodonta, Archiheterodonta, Euheterodonta, Anomalodesmata and Imparidentia new clade ( = Euheterodonta excluding Anomalodesmata) were recovered across analyses, irrespective of data treatment or analytical framework. Another clade supported by our analyses but not formally recognised in the literature includes Palaeoheterodonta and Archiheterodonta, which emerged under multiple analytical conditions. The origin and diversification of each of these major clades is Cambrian or Ordovician, except for Archiheterodonta, which diverged from Palaeoheterodonta during the Cambrian, but diversified during the Mesozoic. Although the radiation of some lineages was shifted towards the Palaeozoic (Pteriomorphia, Anomalodesmata), or presented a gap between origin and diversification (Archiheterodonta, Unionida), Imparidentia showed steady diversification through the Palaeozoic and Mesozoic. Finally, a classification system with six major monophyletic lineages is proposed to comprise modern Bivalvia: Protobranchia, Pteriomorphia, Palaeoheterodonta, Archiheterodonta, Anomalodesmata and Imparidentia.


2013 ◽  
Vol 58 (4) ◽  
Author(s):  
Kurt Galbreath ◽  
Kristina Ragaliauskaite ◽  
Leonas Kontrimavichus ◽  
Arseny Makarikov ◽  
Eric Hoberg

AbstractHymenolepidid cestodes in Myodes glareolus from Lithuania and additional specimens originally attributed to Arostrilepis horrida from the Republic of Belarus are now referred to A. tenuicirrosa. Our study includes the first records of A. tenuicirrosa from the European (western) region of the Palearctic, and contributes to the recognition of A. horrida (sensu lato) as a complex of cryptic species distributed broadly across the Holarctic. Specimens of A. tenuicirrosa from Lithuania were compared to cestodes representing apparently disjunct populations in the eastern Palearctic based on structural characters of adult parasites and molecular sequence data from nuclear (ITS2) and mitochondrial (cytochrome b) genes. Morphological and molecular data revealed low levels of divergence between eastern and western populations. Phylogeographic relationships among populations and host biogeographic history suggests that limited intraspecific diversity within A. tenuicirrosa may reflect a Late Pleistocene transcontinental range expansion from an East Asian point of origin.


Zootaxa ◽  
2011 ◽  
Vol 2984 (1) ◽  
pp. 67 ◽  
Author(s):  
LEANDRO C. S. ASSIS ◽  
MARCELO R. DE CARVALHO ◽  
QUENTIN D. WHEELER

David Wake and colleagues provided a thought-provoking review of the concept of homoplasy through the integration, within a phylogenetic framework, of genetic and developmental data (Wake et al. 2011). According to them (p. 1032) “Molecular sequence data have greatly increased our ability to identify homoplastic traits.” This is made clear, for example, in their flow chart for homoplasy detection (Figure 2, p. 1034), wherein homoplasy is discovered through the mapping of “traits of interest” onto a phylogram, a practice common in the molecular phylogenetic paradigm. The “mapping” is usually of morphological characters that are employed to support the chosen (molecular) topology, but which, as a consequence, do not themselves contribute to the formation of those topologies (Assis & Carvalho 2010).


2007 ◽  
Vol 21 (3) ◽  
pp. 207 ◽  
Author(s):  
Ronald M. Clouse ◽  
Gonzalo Giribet

Opiliones (harvestmen) in the suborder Cyphophthalmi are not known to disperse across oceans and each family in the suborder is restricted to a clear biogeographic region. While undertaking a revisionary study of the South-east Asian family Stylocellidae, two collections of stylocellids from New Guinea were noted. This was a surprising find, since the island appears never to have had a land connection with Eurasia, where the rest of the family members are found. Here, 21 New Guinean specimens collected from the westernmost end of the island (Manokwari Province, Indonesia) are described and their relationships to other cyphophthalmids are analysed using molecular sequence data. The specimens represent three species, Stylocellus lydekkeri, sp. nov., S. novaguinea, sp. nov. and undescribed females of a probable third species, which are described and illustrated using scanning electron microscope and stereomicroscope photographs. Stylocellus novaguinea, sp. nov. is described from a single male and it was collected with a juvenile and the three females of the apparent third species. Molecular phylogenetic analyses indicate that the new species are indeed in the family Stylocellidae and they therefore reached western New Guinea by dispersing through Lydekker’s line – the easternmost limit of poor dispersers from Eurasia. The New Guinean species may indicate at least two episodes of oceanic dispersal by Cyphophthalmi, a phenomenon here described for the first time. Alternatively, the presence in New Guinea of poor dispersers from Eurasia may suggest novel hypotheses about the history of the island.


2000 ◽  
Vol 74 (5) ◽  
pp. 839-852 ◽  
Author(s):  
D. M. Haasl

Phylogenetic relationships within the neogastropod family Nassariidae are poorly understood as are relationships between the Nassariidae and other fossil and extant buccinid taxa. The poor resolution of nassariid and buccinoidean relationships is due to: 1) the complex distribution among these gastropods of characters commonly used in classification; 2) a number of Mesozoic and Paleogene genera whose relationships to extant buccinoidean lineages are poorly constrained; and 3) a lack of previous efforts to address these problems on a rigorous, phylogenetic basis.The results of a phylogenetic analysis of nassariid genera did not decisively support the monophyly of the family. The buccinid subfamily Photinae was an extant sister group to the Nassariinae in a phylogenetic analysis of extant taxa and on many cladograms from an analysis combining fossil and extant taxa. In addition, Buccitriton (representing the Paleogene Tritiaria group) was a sister taxon to the Nassariinae in all analyses in which it was included, regardless of the identity of the extant nassariine sister group. This suggests that the photines, which likely arose from a Tritiaria ancestor, are the closest living relatives to the Nassariinae. Many Paleogene fossil “buccinoid” taxa appear to be more distantly related to the Nassariinae and possibly to the rest of the nassariids as well. Stratigraphic range data combined with the results of this study suggest that the Nassariinae diversified rapidly in the early Miocene and achieved a cosmopolitan distribution early in their history. A largely Indo-Pacific subclade was consistently deeply-nested within the Nassariinae, suggesting that nassariines invaded the Indo-Pacific region most recently. The timing of this invasion is difficult to estimate but had occurred by the end of the Miocene. Further analyses using molecular sequence data, relative stratigraphic position, or focusing in more detail on the Paleogene taxa are required to resolve the identity of the sister group to the Nassariinae with greater confidence.


Zootaxa ◽  
2010 ◽  
Vol 2553 (1) ◽  
pp. 35 ◽  
Author(s):  
MARJOLAINE GIROUX ◽  
TERRY A. WHEELER

Sarcophaga (Bulbostyla) subgen. nov. is described as a new subgenus of Sarcophaga Meigen to accommodate some species previously assigned to the subgenus S. (Neobellieria) Blanchard. Sarcophaga (Bulbostyla) contains nine species: S. airosalis sp. nov., S. cadyi sp. nov. (type species), S. cuautla sp. nov., S. fattigina sp. nov., S. ironalis sp. nov., S. semimarginalis Hall, S. sternalis (Reinhard), S. subdiscalis Aldrich and S. yorkii Parker. All species are described and illustrated and a key to the species is provided. The species within the subgenus are morphologically uniform externally and are distinguished mostly on male genitalic characters. Phylogenetic relationships within Bulbostyla are unresolved based on morphological characters and will require consideration of additional characters, such as molecular sequence data. The genus-group taxon Robackina Lopes is removed from synonymy with the subgenus Sarcophaga (Neobellieria) and reinstated as a valid subgenus of Sarcophaga (stat. nov.) to accommodate the single New World species Sarcophaga triplasia Wulp. A lectotype is designated for S. triplasia. The subgenus and species are redescribed and illustrated.


2006 ◽  
Vol 2 (4) ◽  
pp. 543-547 ◽  
Author(s):  
Per G.P Ericson ◽  
Cajsa L Anderson ◽  
Tom Britton ◽  
Andrzej Elzanowski ◽  
Ulf S Johansson ◽  
...  

Patterns of diversification and timing of evolution within Neoaves, which includes almost 95% of all bird species, are virtually unknown. On the other hand, molecular data consistently indicate a Cretaceous origin of many neoavian lineages and the fossil record seems to support an Early Tertiary diversification. Here, we present the first well-resolved molecular phylogeny for Neoaves, together with divergence time estimates calibrated with a large number of stratigraphically and phylogenetically well-documented fossils. Our study defines several well-supported clades within Neoaves. The calibration results suggest that Neoaves, after an initial split from Galloanseres in Mid-Cretaceous, diversified around or soon after the K/T boundary. Our results thus do not contradict palaeontological data and show that there is no solid molecular evidence for an extensive pre-Tertiary radiation of Neoaves.


Sign in / Sign up

Export Citation Format

Share Document