Flexural strengthening of RC beams using distributed prestressed high strength steel wire rope: theoretical analysis

2012 ◽  
Vol 10 (2) ◽  
pp. 160-174 ◽  
Author(s):  
Gang Wu ◽  
Zhishen Wu ◽  
Yang Wei ◽  
Jianbiao Jiang ◽  
Yi Cui
2010 ◽  
Vol 62 (4) ◽  
pp. 253-265 ◽  
Author(s):  
G. Wu ◽  
Z.S. Wu ◽  
J.B. Jiang ◽  
Y. Tian ◽  
M. Zhang

2013 ◽  
Vol 444-445 ◽  
pp. 1067-1071
Author(s):  
Li Ping Sun ◽  
Zheng Liu ◽  
Yan Zi Liu

The high strength steel wire mesh and polymer mortar reinforcement technology has the advantages of high strength, high temperature resistance,corrosion,resistant, etc. In this paper,we analysis the flexural properties of RC beams strengthened by it using ANSYS.To bear the same moment in the same area of the reinforcement steel strand, and then get effect of different span and different reinforcement methods (comparative beam, direct reinforced beams,and secondary load of reinforced beams) on flexural load-carrying capacity and deflection, then compare and analysis,and draws the conclusion which can provide reference for practical engineering.


Author(s):  
Yanuar Haryanto ◽  
Ay Lie Han ◽  
Hsuan-Teh Hu ◽  
Fu-Pei Hsiao ◽  
Banu Ardi Hidayat ◽  
...  

Author(s):  
Reidar André Skarbøvik ◽  
Henry Piehl ◽  
Sverre Torben ◽  
Mette Lokna Nedreberg ◽  
Vilmar Æsøy

Abstract In many marine applications, modern high-performance synthetic fibre ropes have replaced, and are continuing to replace, well-known steel wire rope solutions due to the low weight of the synthetic ropes removing limitations for operations at large water depths. In some cases, replacement of steel wires with synthetic ropes has caused permanent deformations and damage to multilayer winch drums, indicating that synthetic fibre ropes can cause larger pressure on winch drums than steel wire. This paper presents the first results from a novel experimental investigation of a multilayer winch subjected to a selection of braided high-performance synthetic fibre ropes and a reference steel wire rope. The tested ropes, with nominal diameters between 12 and 20mm, are spooled at different tensile loads and with maximum number of layers in the range of 10 to 19. The experiments utilize a test rig with two winch drums, controllable spooling gear and sheaves with load cells to apply and control required load and speed during spooling. Measurements from twelve biaxial strain gauges on the inside of a thick high-strength drum are used to measure stresses in the structure. The results show that the selected fibre ropes induce considerably larger stress in the winch drum than the steel wire rope. This confirms that design of multilayer winch drums with high-performance synthetic fibre ropes requires special considerations and that the guidance for multilayer stress calculations, related to steel wire ropes, in DNV-GL-0378 “Standard for offshore and platform lifting appliances” is not applicable for synthetic fibre rope applications.


Sign in / Sign up

Export Citation Format

Share Document