Toll-like receptors in the pathogenesis of inflammatory diseases

2009 ◽  
Vol 5 (2) ◽  
pp. 119-128
Author(s):  
Jun K. Lee ◽  
Daniel H. Hwang ◽  
Joo Y. Lee
2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Olga DelaRosa ◽  
Eleuterio Lombardo

Mesenchymal stem cells (MSCs) are of special interest as therapeutic agents in the settings of both chronic inflammatory and autoimmune diseases. Toll-like receptors (TLR) ligands have been linked with the perpetuation of inflammation in a number of chronic inflammatory diseases due to the permanent exposure of the immune system to TLR-specific stimuli. Therefore, MSCs employed in therapy can be potentially exposed to TLR ligands, which may modulate MSC therapeutic potential in vivo. Recent results demonstrate that MSCs are activated by TLR ligands leading to modulation of the differentiation, migration, proliferation, survival, and immunosuppression capacities. However inconsistent results among authors have been reported suggesting that the source of MSCs, TLR stimuli employed or culture conditions play a role. Notably, activation by TLR ligands has not been reported to modulate the “immunoprivileged” phenotype of MSCs which is of special relevance regarding the use of allogeneic MSC-based therapies. In this review, we discuss the available data on the modulation of MSCs activity through TLR signalling.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Simona Frosali ◽  
Danilo Pagliari ◽  
Giovanni Gambassi ◽  
Raffaele Landolfi ◽  
Franco Pandolfi ◽  
...  

The gut is able to maintain tolerance to microbial and food antigens. The intestine minimizes the number of harmful bacteria by shaping the microbiota through a symbiotic relationship. In healthy human intestine, a constant homeostasis is maintained by the perfect regulation of microbial load and the immune response generated against it. Failure of this balance may result in various pathological conditions. Innate immune sensors, such as Toll-like receptors (TLRs), may be considered an interface among intestinal epithelial barrier, microbiota, and immune system. TLRs pathway, activated by pathogens, is involved in the pathogenesis of several infectious and inflammatory diseases. The alteration of the homeostasis between physiologic and pathogenic bacteria of intestinal flora causes a condition called dysbiosis. The breakdown of homeostasis by dysbiosis may increase susceptibility to inflammatory bowel diseases. It is evident that environment, genetics, and host immunity form a highly interactive regulatory triad that controls TLR function. Imbalanced relationships within this triad may promote aberrant TLR signaling, critically contributing to acute and chronic intestinal inflammatory processes, such as in IBD, colitis, and colorectal cancer. The study of interactions between different components of the immune systems and intestinal microbiota will open new horizons in the knowledge of gut inflammation.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Payam Behzadi ◽  
Herney Andrés García-Perdomo ◽  
Tomasz M. Karpiński

Background/Aim. Toll-like receptors (TLRs) are pivotal biomolecules in the immune system. Today, we are all aware of the importance of TLRs in bridging innate and adaptive immune system to each other. The TLRs are activated through binding to damage/danger-associated molecular patterns (DAMPs), microbial/microbe-associated molecular patterns (MAMPs), pathogen-associated molecular patterns (PAMPs), and xenobiotic-associated molecular patterns (XAMPs). The immunogenetic molecules of TLRs have their own functions, structures, coreceptors, and ligands which make them unique. These properties of TLRs give us an opportunity to find out how we can employ this knowledge for ligand-drug discovery strategies to control TLRs functions and contribution, signaling pathways, and indirect activities. Hence, the authors of this paper have a deep observation on the molecular and structural biology of human TLRs (hTLRs). Methods and Materials. To prepare this paper and fulfill our goals, different search engines (e.g., GOOGLE SCHOLAR), Databases (e.g., MEDLINE), and websites (e.g., SCOPUS) were recruited to search and find effective papers and investigations. To reach this purpose, we tried with papers published in the English language with no limitation in time. The iCite bibliometrics was exploited to check the quality of the collected publications. Results. Each TLR molecule has its own molecular and structural biology, coreceptor(s), and abilities which make them unique or a complementary portion of the others. These immunogenetic molecules have remarkable roles and are much more important in different sections of immune and nonimmune systems rather than that we understand to date. Conclusion. TLRs are suitable targets for ligand-drug discovery strategies to establish new therapeutics in the fields of infectious and autoimmune diseases, cancers, and other inflammatory diseases and disorders.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Shen-Nien Wang ◽  
Sen-Te Wang ◽  
King Teh Lee

Toll-like receptors (TLRs) are not only crucial to the initiation of the immune system, but also play a key role in several human inflammatory diseases. Hepatocellular carcinoma (HCC) is among those human cancers, which arise from sites of chronic inflammation. Therefore, a number of studies have explored the potential contribution of TLRs to HCC occurrence, which is initiated by exposure to chronic hepatic inflammation of different etiologies (including ethanol, and chronic B and C viral infections). Recent epidemiological data have shown the association of obesity and HCC development. Given the fact that adipose tissues can produce a variety of inflammation-related adipokines, obesity has been characterized as a state of chronic inflammation. Adipokines are therefore considered as important mediators linking inflammation to several metabolic diseases, including cancers. More recently, many experts have also shown the bridging role of TLRs between inflammation and metabolism. Hopefully, to retrieve the potential interaction between TLRs and adipokines in carcinogenesis of HCC will shed a new light on the therapeutic alternative for HCC. In this paper, the authors first review the respective roles of TLRs and adipokines, discuss their mutual interaction in chronic inflammation, and finally anticipate further investigations of this interaction in HCC development.


2016 ◽  
Vol 101 (1) ◽  
pp. 193-204 ◽  
Author(s):  
Andreas Barratt-Due ◽  
Søren Erik Pischke ◽  
Per H. Nilsson ◽  
Terje Espevik ◽  
Tom Eirik Mollnes

Author(s):  
Salwa Refat El-Zayat ◽  
Hiba Sibaii ◽  
Fathia A. Mannaa

Abstract Background Toll-like receptors (TLRs) are an important family of receptors that constitute the first line of defense system against microbes. They can recognize both invading pathogens and endogenous danger molecules released from dying cells and damaged tissues and play a key role in linking innate and adaptive immunity. TLRs are widely distributed in both immune and other body cells. The expressions and locations of TLRs are regulated in response to specific molecules derived from pathogens or damaged host cells. The binding of ligands to TLR activates specific intracellular signaling cascades that initiate host defense reactions. Such binding is ligand-dependent and cell type-dependent and leads to production of pro-inflammatory cytokines and type 1 interferon. TLR-dependent signaling pathways are tightly increased during innate immune responses by a variety of negative regulators. Overactivation of TLRs can ultimately lead to disruption of immune homeostasis and thus increase the risk for inflammatory diseases and autoimmune disorders. Antagonists/inhibitors targeting the TLR signaling pathways have emerged as novel therapeutics to treat these diseases. Aim of work The present review summarizes the structure, characterizations, and signaling of TLRs and their regulators, as well as describes the implication of TLRs in many diseases with a brief idea about the inhibitors that target TLR signaling pathways. Conclusion We conclude that TLRs are the main elements of our immune system, and they should be maintained functioning to keep the integrity of innate immunity. Targeting of TLR signaling represents a new challenge for treatment of many diseases.


Sign in / Sign up

Export Citation Format

Share Document