Performance evaluation of 3D vision-based semi-autonomous control method for assistive robotic manipulator

2017 ◽  
Vol 13 (2) ◽  
pp. 140-145 ◽  
Author(s):  
Hyun W. Ka ◽  
Cheng-Shiu Chung ◽  
Dan Ding ◽  
Khara James ◽  
Rory Cooper
ROBOT ◽  
2011 ◽  
Vol 33 (1) ◽  
pp. 40-45 ◽  
Author(s):  
Yuntian HUANG ◽  
Weidong CHEN ◽  
Yixiang SUN

2012 ◽  
Vol 2012 (0) ◽  
pp. _403-1_-_403-10_
Author(s):  
Masatoshi MASUTO ◽  
Daisuke SANNAN ◽  
Syunsuke FUKUTI ◽  
Toru WATANABE ◽  
Kazuto SETO

Robotica ◽  
2005 ◽  
Vol 24 (2) ◽  
pp. 229-237 ◽  
Author(s):  
Jae H. Chung ◽  
Changhoon Kim

This paper discusses the modeling and control of a robotic manipulator with a new deburring tool, which integrates two pneumatic actuators to take advantage of a double cutting action. A coordination control method is developed by decomposing the robotic deburring system into two subsystems; the arm and the deburring tool. A decentralized control approach is pursued, in which suitable controllers were designed for the two subsystems in the coordination scheme. In simulation, three different tool configurations are considered: rigid, single pneumatic and integrated pneumatic tools. A comparative study is performed to investigate the deburring performance of the deburring arm with the different tools. Simulation results show that the developed robotic deburring system significantly improves the accuracy of the deburring operation.


Author(s):  
Pradeep Reddy Bonikila ◽  
Ravi Kumar Mandava ◽  
Pandu Ranga Vundavilli

The path tracking phenomenon of a robotic manipulator arm plays an important role, when the manipulators are used in continuous path industrial applications, such as welding, machining and painting etc. Nowadays, robotic manipulators are extensively used in performing the said tasks in industry. Therefore, it is essential for the manipulator end effector to track the path designed to perform the task in an effective way. In this chapter, an attempt is made to develop a feedback control method for a 4-DOF spatial manipulator to track a path with the help of a PID controller. In order to design the said controller, the kinematic and dynamic models of the robotic manipulator are derived. Further, the concept of inverse kinematics has been used to track different paths, namely a straight line and parabolic paths continuously. The effectiveness of the developed algorithm is tested on a four degree of freedom manipulator arm in simulations.


Sign in / Sign up

Export Citation Format

Share Document