A novel service level agreement model using blockchain and smart contract for cloud manufacturing in industry 4.0

Author(s):  
Wenan Tan ◽  
Hai Zhu ◽  
Jinjing Tan ◽  
Yao Zhao ◽  
Li Da Xu ◽  
...  
2019 ◽  
Vol 9 (17) ◽  
pp. 3602 ◽  
Author(s):  
Lei Hang ◽  
Do-Hyeun Kim

Recently, technology startups have leveraged the potential of blockchain-based technologies to govern institutions or interpersonal trust by enforcing signed treaties among different individuals in a decentralized environment. However, it is going to be hard enough convincing that the blockchain technology could completely replace the trust among trading partners in the sharing economy as sharing services always operate in a highly dynamic environment. With the rapid expanding of the rental market, the sharing economy faces more and more severe challenges in the form of regulatory uncertainty and concerns about abuses. This paper proposes an enhanced decentralized sharing economy service using the service level agreement (SLA), which documents the services the provider will furnish and defines the service standards the provider is obligated to meet. The SLA specifications are defined as the smart contract, which facilitates multi-user collaboration and automates the process with no involvement of the third party. To demonstrate the usability of the proposed solution in the sharing economy, a notebook sharing case study is implemented using the Hyperledger Fabric. The functionalities of the smart contract are tested using the Hyperledger Composer. Moreover, the efficiency of the designed approach is demonstrated through a series of experimental tests using different performance metrics.


Author(s):  
Ke Xiao ◽  
Ziye Geng ◽  
Yunhua He ◽  
Gang Xu ◽  
Chao Wang ◽  
...  

AbstractNetwork slicing, as a key technique of 5G, provides a way that network operators can segment multiple virtual logic on the same physical network and each customer can order specific slicing which can meet his requirement of 5G service. The service level agreement of network slicing (NS-SLA) of 5G, as a business agreement signed between the network operators and the customers, specifies the relevant requirements for the 5G services provided by the network operators. However, the authenticity of auditing results may not be guaranteed and the customer’s data may be leaked in the existing NS-SLA audit scheme. In this paper, a blockchain-based 5G network slicing NS-SLA audit model is proposed to address the above problems. The blockchain is applied as a public platform and all the dual monitored service parameters will be stored on the blockchain to ensure the authenticity of data. A trapdoor order-revealing encryption algorithm is introduced to audit strategy, which can encrypt the monitored parameters, realize the comparison over ciphertexts and prevent the privacy of data from leaking. Besides, an NS-SLA audit smart contract is designed to implement the audit task and execute corresponding punishment strategies automatically. We make experiments to exam the cost of the blockchain-based system and the results found clear support for the feasibility of the proposed model.


2020 ◽  
Vol 4 (5) ◽  
pp. 41-60
Author(s):  
Lubna Luxmi Dhirani ◽  
Thomas Newe

Hybrid Cloud Service Level Agreements (SLA) comprises of the legal terms and conditions for the cloud contract. Even though all the service level objectives, metrics and service descriptions are clearly outlined in the cloud SLA contract, sometimes vendors fail to meet the promised services and confusing terms lead to tenant-vendor cloud legal battles. Hybrid Cloud involves two different cloud models (public and private) working together, applications running under the hybrid cloud are subject to different availability sets, functionality and parameters developing SLA complexity and ambiguity. The new manufacturing environment (Industry 4.0 concept) is based on a fully connected, intelligent and automated factory, which will highly be dependent on cloud computing and IoT-based solutions for data analytics, storage and computational needs. In situations where Hybrid cloud services are not defined and managed properly may result in Industrial-IoT data security issues leading to financial and data losses. This paper discusses various aspects of the cloud service level agreement in Industry 4.0 for better understanding and implementation and puts a light on the issues that arise out of imprecise statements.


Author(s):  
Gurpreet Singh ◽  
Manish Mahajan ◽  
Rajni Mohana

BACKGROUND: Cloud computing is considered as an on-demand service resource with the applications towards data center on pay per user basis. For allocating the resources appropriately for the satisfaction of user needs, an effective and reliable resource allocation method is required. Because of the enhanced user demand, the allocation of resources has now considered as a complex and challenging task when a physical machine is overloaded, Virtual Machines share its load by utilizing the physical machine resources. Previous studies lack in energy consumption and time management while keeping the Virtual Machine at the different server in turned on state. AIM AND OBJECTIVE: The main aim of this research work is to propose an effective resource allocation scheme for allocating the Virtual Machine from an ad hoc sub server with Virtual Machines. EXECUTION MODEL: The execution of the research has been carried out into two sections, initially, the location of Virtual Machines and Physical Machine with the server has been taken place and subsequently, the cross-validation of allocation is addressed. For the sorting of Virtual Machines, Modified Best Fit Decreasing algorithm is used and Multi-Machine Job Scheduling is used while the placement process of jobs to an appropriate host. Artificial Neural Network as a classifier, has allocated jobs to the hosts. Measures, viz. Service Level Agreement violation and energy consumption are considered and fruitful results have been obtained with a 37.7 of reduction in energy consumption and 15% improvement in Service Level Agreement violation.


Author(s):  
Leonardo J. Gutierrez ◽  
Kashif Rabbani ◽  
Oluwashina Joseph Ajayi ◽  
Samson Kahsay Gebresilassie ◽  
Joseph Rafferty ◽  
...  

The increase of mental illness cases around the world can be described as an urgent and serious global health threat. Around 500 million people suffer from mental disorders, among which depression, schizophrenia, and dementia are the most prevalent. Revolutionary technological paradigms such as the Internet of Things (IoT) provide us with new capabilities to detect, assess, and care for patients early. This paper comprehensively survey works done at the intersection between IoT and mental health disorders. We evaluate multiple computational platforms, methods and devices, as well as study results and potential open issues for the effective use of IoT systems in mental health. We particularly elaborate on relevant open challenges in the use of existing IoT solutions for mental health care, which can be relevant given the potential impairments in some mental health patients such as data acquisition issues, lack of self-organization of devices and service level agreement, and security, privacy and consent issues, among others. We aim at opening the conversation for future research in this rather emerging area by outlining possible new paths based on the results and conclusions of this work.


Sign in / Sign up

Export Citation Format

Share Document