Residence times of woody biomass in tropical forests

2013 ◽  
Vol 6 (1) ◽  
pp. 139-157 ◽  
Author(s):  
David Galbraith ◽  
Yadvinder Malhi ◽  
Kofi Affum-Baffoe ◽  
Andrea D.A. Castanho ◽  
Christopher E. Doughty ◽  
...  
2016 ◽  
Vol 162 ◽  
pp. 245-256 ◽  
Author(s):  
Joakim M. Johansen ◽  
Rasmus Gadsbøll ◽  
Jesper Thomsen ◽  
Peter A. Jensen ◽  
Peter Glarborg ◽  
...  

2016 ◽  
Vol 7 (3) ◽  
pp. 649-658 ◽  
Author(s):  
Rashid Rafique ◽  
Jianyang Xia ◽  
Oleksandra Hararuk ◽  
Ghassem R. Asrar ◽  
Guoyong Leng ◽  
...  

Abstract. Representations of the terrestrial carbon cycle in land models are becoming increasingly complex. It is crucial to develop approaches for critical assessment of the complex model properties in order to understand key factors contributing to models' performance. In this study, we applied a traceability analysis which decomposes carbon cycle models into traceable components, for two global land models (CABLE and CLM-CASA′) to diagnose the causes of their differences in simulating ecosystem carbon storage capacity. Driven with similar forcing data, CLM-CASA′ predicted  ∼ 31 % larger carbon storage capacity than CABLE. Since ecosystem carbon storage capacity is a product of net primary productivity (NPP) and ecosystem residence time (τE), the predicted difference in the storage capacity between the two models results from differences in either NPP or τE or both. Our analysis showed that CLM-CASA′ simulated 37 % higher NPP than CABLE. On the other hand, τE, which was a function of the baseline carbon residence time (τ′E) and environmental effect on carbon residence time, was on average 11 years longer in CABLE than CLM-CASA′. This difference in τE was mainly caused by longer τ′E of woody biomass (23 vs. 14 years in CLM-CASA′), and higher proportion of NPP allocated to woody biomass (23 vs. 16 %). Differences in environmental effects on carbon residence times had smaller influences on differences in ecosystem carbon storage capacities compared to differences in NPP and τ′E. Overall, the traceability analysis showed that the major causes of different carbon storage estimations were found to be parameters setting related to carbon input and baseline carbon residence times between two models.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Adam R. Martin ◽  
Grant M. Domke ◽  
Mahendra Doraisami ◽  
Sean C. Thomas

AbstractA key uncertainty in quantifying dead wood carbon (C) stocks—which comprise ~8% of total forest C pools globally—is a lack of accurate dead wood C fractions (CFs) that are employed to convert dead woody biomass into C. Most C estimation protocols utilize a default dead wood CF of 50%, but live tree studies suggest this value is an over-estimate. Here, we compile and analyze a global database of dead wood CFs in trees, showing that dead wood CFs average 48.5% across forests, deviating significantly from 50%, and varying systematically among biomes, taxonomic divisions, tissue types, and decay classes. Utilizing data-driven dead wood CFs in tropical forests alone may correct systematic overestimates in dead wood C stocks of ~3.0 Pg C: an estimate approaching nearly the entire dead wood C pool in the temperate forest biome. We provide for the first time, robust empirical dead wood CFs to inform global forest C estimation.


1921 ◽  
Vol 3 (3supp) ◽  
pp. 267-270
Author(s):  
Vernon Kellogg ◽  
R. M. Yerkes ◽  
H. E. Howe
Keyword(s):  

2006 ◽  
Vol 45 (03) ◽  
pp. 134-138 ◽  
Author(s):  
T. Kull ◽  
N. M. Blumstein ◽  
D. Bunjes ◽  
B. Neumaier ◽  
A. K. Buck ◽  
...  

SummaryAim: For the therapeutic application of radiopharmaceuticals the activity is determined on an individual basis. Here we investigated the accuracy for a simplified assessment of the residence times for a 188Re-labelled anti-CD66 monoclonal antibody. Patients, methods: For 49 patients with high risk leukaemia (24 men, 25 women, age: 44 ± 12 years) the residence times were determined for the injected 188Re-labelled anti-CD66 antibodies (1.3 ± 0.4 GBq, 5–7 GBq/mg protein, >95% 188Re bound to the antibody) based on 5 measurements (1.5, 3, 20, 26, and 44 h p.i.) using planar conjugate view gamma camera images (complete method). In a simplified method the residence times were calculated based on a single measurement 3 h p.i. Results: The residence times for kidneys, liver, red bone marrow, spleen and remainder of body for the complete method were 0.4 ± 0.2 h, 1.9 ± 0.8 h, 7.8 ± 2.1 h, 0.6 ± 0.3 h and 8.6 ± 2.1 h, respectively. For all organs a linear correlation exists between the residence times of the complete method and the simplified method with the slopes (correlation coefficients R > 0.89) of 0.89, 0.99, 1.23, 1.13 and 1.09 for kidneys, liver, red bone marrow, spleen and remainder of body, respectively. Conclusion: The proposed approach allows reliable prediction of biokinetics of 188Re-labelled anti-CD66 monoclonal antibody biodistribution with a single study. Efficient pretherapeutic estimation of organ absorbed dose may be possible, provided that a more stable anti-CD66 antibody preparation is available.


Author(s):  
S. L. BROWN ◽  
J. S. KERN ◽  
P. E. SCHROEDER
Keyword(s):  

Author(s):  
Randall A. Kramer ◽  
narendra Sharma ◽  
Mohan Munasinghe
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document