scholarly journals Carbon fractions in the world’s dead wood

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Adam R. Martin ◽  
Grant M. Domke ◽  
Mahendra Doraisami ◽  
Sean C. Thomas

AbstractA key uncertainty in quantifying dead wood carbon (C) stocks—which comprise ~8% of total forest C pools globally—is a lack of accurate dead wood C fractions (CFs) that are employed to convert dead woody biomass into C. Most C estimation protocols utilize a default dead wood CF of 50%, but live tree studies suggest this value is an over-estimate. Here, we compile and analyze a global database of dead wood CFs in trees, showing that dead wood CFs average 48.5% across forests, deviating significantly from 50%, and varying systematically among biomes, taxonomic divisions, tissue types, and decay classes. Utilizing data-driven dead wood CFs in tropical forests alone may correct systematic overestimates in dead wood C stocks of ~3.0 Pg C: an estimate approaching nearly the entire dead wood C pool in the temperate forest biome. We provide for the first time, robust empirical dead wood CFs to inform global forest C estimation.

2010 ◽  
Vol 40 (11) ◽  
pp. 2135-2145 ◽  
Author(s):  
M. T. Moroni ◽  
C. H. Shaw ◽  
P. Otahal

Quantification of stand and forest C stocks in response to different disturbances is necessary to develop climate change mitigation strategies and to evaluate forest C accounting tools. Live tree, dead tree, woody debris (WD), stump, buried wood, and organic and mineral soil C stocks are described in chronosequences of black spruce ( Picea mariana (Mill.) BSP) (harvest and fire origin) and balsam fir ( Abies balsamea (L.) Mill.) (insect and harvest origin). The largest C stocks were found in mineral soil (≤179 Mg·ha–1), organic soil (≤123 Mg·ha–1), and live tree (≤93 Mg·ha–1) pools. Live tree C changed predictably with disturbance history and time since disturbance, increasing with forest age. Regeneration growth slowed under snags. Thinning accelerated production of larger trees but reduced site live tree C. Dead tree and WD C were temporally dynamic and strongly influenced by disturbance history and time since disturbance, but abundances in differently disturbed forests converged at low levels 40–60 years after disturbance. Only immediately following natural disturbances were there large amounts of snag C (26–30 Mg·ha–1). WD C was relatively abundant <3 years after harvesting (15–17 Mg·ha–1) and 31–36 years after natural disturbance (9 Mg·ha–1). Buried wood stocks were small, but comparable with WD stocks in some forests.


2013 ◽  
Vol 6 (1) ◽  
pp. 139-157 ◽  
Author(s):  
David Galbraith ◽  
Yadvinder Malhi ◽  
Kofi Affum-Baffoe ◽  
Andrea D.A. Castanho ◽  
Christopher E. Doughty ◽  
...  

2016 ◽  
Vol 88 (2) ◽  
pp. 829-845 ◽  
Author(s):  
THAIS M.F. FERREIRA ◽  
ADRIANA ITATI OLIVARES ◽  
LEONARDO KERBER ◽  
RODRIGO P. DUTRA ◽  
LEONARDO S. AVILLA

ABSTRACT Echimyidae (spiny rats, tree rats and the coypu) is the most diverse family of extant South American hystricognath rodents (caviomorphs). Today, they live in tropical forests (Amazonian, coastal and Andean forests), occasionally in more open xeric habitats in the Cerrado and Caatinga of northern South America, and open areas across the southern portion of the continent (Myocastor). The Quaternary fossil record of this family remains poorly studied. Here, we describe the fossil echimyids found in karst deposits from southern Tocantins, northern Brazil. The analyzed specimens are assigned to Thrichomys sp., Makalata cf. didelphoides and Proechimys sp. This is the first time that a fossil of Makalata is reported. The Pleistocene record of echimyids from this area is represented by fragmentary remains, which hinders their determination at specific levels. The data reported here contributes to the understanding of the ancient diversity of rodents of this region, evidenced until now in other groups, such as the artiodactyls, cingulates, carnivores, marsupials, and squamate reptiles.


1997 ◽  
Vol 13 (5) ◽  
pp. 697-708 ◽  
Author(s):  
M. Delaney ◽  
S. Brown ◽  
A. E. Lugo ◽  
A. Torres-Lezama ◽  
N. Bello Quintero

ABSTRACTOne of the major uncertainties concerning the role of tropical forests in the global carbon cycle is the lack of adequate data on the carbon content of all their components. The goal of this study was to contribute to filling this data gap by estimating the quantity of carbon in the biomass, soil and necromass for 23 long-term permanent forest plots in five life zones of Venezuela to determine how C was partitioned among these components across a range of environments. Aboveground biomass C ranged from 70 to 179 Mg ha−1 and soil C from 125 to 257 Mg ha−1, and they represented the two largest C components in all plots. The C in fine litter (2.4 to 5.2 Mg ha−1), dead wood (2.4 to 21.2 Mg ha−1) and roots (23.6 to 38.0 Mg ha−1) accounted for less than 13% of the total C. The total amount of C among life zones ranged from 302 to 488 Mg ha−1, and showed no clear trend with life zone. In three of the five life zones, more C was found in the dead (soil, litter, dead wood) than in the live (biomass) components (dead to live ratios of 1.3 to 2.3); the lowland moist and moist transition to dry life zones had dead to live ratios of less than one. Results from this research suggest that for most life zones, an amount equivalent to between 20 and 58% of the aboveground biomass is located in necromass and roots. These percentages coupled with reliable estimates of aboveground biomass from forest inventories enable a more complete estimation of the C content of tropical forests to be made.


2007 ◽  
Vol 363 (1501) ◽  
pp. 2259-2268 ◽  
Author(s):  
Werner A Kurz ◽  
Graham Stinson ◽  
Greg Rampley

To understand how boreal forest carbon (C) dynamics might respond to anticipated climatic changes, we must consider two important processes. First, projected climatic changes are expected to increase the frequency of fire and other natural disturbances that would change the forest age-class structure and reduce forest C stocks at the landscape level. Second, global change may result in increased net primary production (NPP). Could higher NPP offset anticipated C losses resulting from increased disturbances? We used the Carbon Budget Model of the Canadian Forest Sector to simulate rate changes in disturbance, growth and decomposition on a hypothetical boreal forest landscape and to explore the impacts of these changes on landscape-level forest C budgets. We found that significant increases in net ecosystem production (NEP) would be required to balance C losses from increased natural disturbance rates. Moreover, increases in NEP would have to be sustained over several decades and be widespread across the landscape. Increased NEP can only be realized when NPP is enhanced relative to heterotrophic respiration. This study indicates that boreal forest C stocks may decline as a result of climate change because it would be difficult for enhanced growth to offset C losses resulting from anticipated increases in disturbances.


2018 ◽  
Vol 194 ◽  
pp. 01012
Author(s):  
Natalya Ivanova ◽  
Elena Bulba

For the first time, a mathematical model for the drying of woody biomass during conductive heating with localization of the evaporation front has been formulated. The processes of moisture removal during the filtration of steam through the porous structure of the material at an ambient temperature of Te = 373 K were considered. Humidity was varied (in the range from 6% to 40%) and dimensions of wood blanks (Rd = 0.0035 - 0.035 m). Based on the results of numerical simulation, the conditions and characteristics (evaporation rate Wisp, drying time τ dry) of the process of moisture removal from wood biomass are determined. The mathematical model allows to calculate the drying time, as well as the mass evaporation rate for different sizes of wood sample, humidity and temperature conditions.


Zootaxa ◽  
2012 ◽  
Vol 3362 (1) ◽  
pp. 1
Author(s):  
GUO TANG ◽  
SHUQIANG LI

The lynx spiders (Araneae: Oxyopidae) from the tropical forests of Xishuangbanna, Yunnan Province, China were studied. Atotal of three genera and 16 species were examined and studied, including 10 new species from two genera: Hamataliwa fove-ata sp. nov., H. manca sp. nov., H. menglunensis sp. nov., H. oculata sp. nov., H. pedicula sp. nov., H. pentagona sp. nov., H.pilulifera sp. nov., H. submanca sp. nov., Oxyopes complicatus sp. nov. and O. submirabilis sp. nov. Hamataliwa subhadrae(Tikader, 1970) comb. nov. is transferred from Oxyopes Latreille, 1804. The females of Oxyopes mirabilis Zhang, 2005 and O.tenellus Song, 1991 are described for the first time. Hamadruas hieroglyphica (Thorell, 1887) and Hamataliwa subhadrae(Tikader, 1970) are newly recorded from China. The species Oxyopes bianatinus Xie & Kim, 1996 is considered a junior syn-onym of Oxyopes fujianicus Song & Zhu, 1993. Oxyopes decorosus Zhang & Zhu, 2005 is recorded from the Yunnan Province, China for the first time.


Drug Safety ◽  
2019 ◽  
Vol 42 (12) ◽  
pp. 1487-1498 ◽  
Author(s):  
Rika Wakao ◽  
Henric Taavola ◽  
Lovisa Sandberg ◽  
Eiko Iwasa ◽  
Saori Soejima ◽  
...  

2014 ◽  
Vol 59 (1) ◽  
pp. 85-96 ◽  
Author(s):  
Ulf Schiefelbein ◽  
Adam Flakus ◽  
Harrie J. M. Sipman ◽  
Martin Kukwa ◽  
Magdalena Oset

Abstract Microlichens of the family Graphidaceae are important components of the lowland and montane tropical forests in Bolivia. In this paper we present new records for 51 taxa of the family in Bolivia. Leiorreuma lyellii (Sm.) Staiger is reported as new for the Southern Hemisphere, while Diploschistes caesioplumbeus (Nyl.) Vain., Graphis daintreensis (A. W. Archer) A. W. Archer, G. duplicatoinspersa Lücking, G. emersa Müll. Arg., G. hossei Vain., G. immersella Müll. Arg. and G. subchrysocarpa Lücking are new for South America. Thirty taxa are reported for the first time from Bolivia. Notes on distribution are provided for most species.


Sign in / Sign up

Export Citation Format

Share Document