Artificial bee colony feature selection algorithm combined with machine learning algorithms to predict vertical and lateral distribution of soil organic matter in South Dakota, USA

2017 ◽  
Vol 8 (3) ◽  
pp. 277-291 ◽  
Author(s):  
Ruhollah Taghizadeh-Mehrjardi ◽  
Ram Neupane ◽  
Kunal Sood ◽  
Sandeep Kumar
2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Tanya Gera ◽  
Jaiteg Singh ◽  
Abolfazl Mehbodniya ◽  
Julian L. Webber ◽  
Mohammad Shabaz ◽  
...  

Ransomware is a special malware designed to extort money in return for unlocking the device and personal data files. Smartphone users store their personal as well as official data on these devices. Ransomware attackers found it bewitching for their financial benefits. The financial losses due to ransomware attacks are increasing rapidly. Recent studies witness that out of 87% reported cyber-attacks, 41% are due to ransomware attacks. The inability of application-signature-based solutions to detect unknown malware has inspired many researchers to build automated classification models using machine learning algorithms. Advanced malware is capable of delaying malicious actions on sensing the emulated environment and hence posing a challenge to dynamic monitoring of applications also. Existing hybrid approaches utilize a variety of features combination for detection and analysis. The rapidly changing nature and distribution strategies are possible reasons behind the deteriorated performance of primitive ransomware detection techniques. The limitations of existing studies include ambiguity in selecting the features set. Increasing the feature set may lead to freedom of adept attackers against learning algorithms. In this work, we intend to propose a hybrid approach to identify and mitigate Android ransomware. This study employs a novel dominant feature selection algorithm to extract the dominant feature set. The experimental results show that our proposed model can differentiate between clean and ransomware with improved precision. Our proposed hybrid solution confirms an accuracy of 99.85% with zero false positives while considering 60 prominent features. Further, it also justifies the feature selection algorithm used. The comparison of the proposed method with the existing frameworks indicates its better performance.


2020 ◽  
Author(s):  
Esra Sarac Essiz ◽  
Murat Oturakci

Abstract As a nature-inspired algorithm, artificial bee colony (ABC) is an optimization algorithm that is inspired by the search behaviour of honey bees. The main aim of this study is to examine the effects of the ABC-based feature selection algorithm on classification performance for cyberbullying, which has become a significant worldwide social issue in recent years. With this purpose, the classification performance of the proposed ABC-based feature selection method is compared with three different traditional methods such as information gain, ReliefF and chi square. Experimental results present that ABC-based feature selection method outperforms than three traditional methods for the detection of cyberbullying. The Macro averaged F_measure of the data set is increased from 0.659 to 0.8 using proposed ABC-based feature selection method.


2020 ◽  
Vol 17 (12) ◽  
pp. 5378-5385
Author(s):  
S. Kasthuri ◽  
A. Nisha Jebaseeli

Twitter Sentiment Study is a difficult task that comprises the various kind of preprocessing phases, including reduction in dimensionality. The reduction in dimensionality ensures minimum computational complexity and improved performance in the classification course. In Twitter data, each tweet has functionality values that may or may not reflect an individual’s response. As a result, when tweets are signified as feature matrices, many sparse data points are created and possibly overhead and error rates increase in sentiment analysis on Twitter. This paper proposes a novel kind of algorithm as Artificial Bee Colony and Pigeon Inspired Optimization Hybrid Feature Selection Algorithm. The ABC-PIO combines with the characteristics that ABC can produce various samples, PIO can reach the best value rapidly and Cauchy perturbation strategy can improve optimal solution. The proposed technique archive Accuracy of 99.01% for Decision tree, 77.34% for Navy Bias and 60.89% Random Forest. The comparative analysis show that the proposed ABC-PIO with Decision tree archive much better results compared to other existing techniques.


2020 ◽  
Vol 8 (2S7) ◽  
pp. 2237-2240

In diagnosis and prediction systems, algorithms working on datasets with a high number of dimensions tend to take more time than those with fewer dimensions. Feature subset selection algorithms enhance the efficiency of Machine Learning algorithms in prediction problems by selecting a subset of the total features and thus pruning redundancy and noise. In this article, such a feature subset selection method is proposed and implemented to diagnose breast cancer using Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) algorithms. This feature selection algorithm is based on Social Group Optimization (SGO) an evolutionary algorithm. Higher accuracy in diagnosing breast cancer is achieved using our proposed model when compared to other feature selection-based Machine Learning algorithms


Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 144 ◽  
Author(s):  
Yan Naung Soe ◽  
Yaokai Feng ◽  
Paulus Insap Santosa ◽  
Rudy Hartanto ◽  
Kouichi Sakurai

The application of a large number of Internet of Things (IoT) devices makes our life more convenient and industries more efficient. However, it also makes cyber-attacks much easier to occur because so many IoT devices are deployed and most of them do not have enough resources (i.e., computation and storage capacity) to carry out ordinary intrusion detection systems (IDSs). In this study, a lightweight machine learning-based IDS using a new feature selection algorithm is designed and implemented on Raspberry Pi, and its performance is verified using a public dataset collected from an IoT environment. To make the system lightweight, we propose a new algorithm for feature selection, called the correlated-set thresholding on gain-ratio (CST-GR) algorithm, to select really necessary features. Because the feature selection is conducted on three specific kinds of cyber-attacks, the number of selected features can be significantly reduced, which makes the classifiers very small and fast. Thus, our detection system is lightweight enough to be implemented and carried out in a Raspberry Pi system. More importantly, as the really necessary features corresponding to each kind of attack are exploited, good detection performance can be expected. The performance of our proposal is examined in detail with different machine learning algorithms, in order to learn which of them is the best option for our system. The experiment results indicate that the new feature selection algorithm can select only very few features for each kind of attack. Thus, the detection system is lightweight enough to be implemented in the Raspberry Pi environment with almost no sacrifice on detection performance.


Sign in / Sign up

Export Citation Format

Share Document