Modeling and optimal design of an off-grid hybrid system for electricity generation using various biodiesel fuels: a case study for Davarzan, Iran

Biofuels ◽  
2016 ◽  
Vol 7 (6) ◽  
pp. 699-712 ◽  
Author(s):  
Akbar Maleki ◽  
Ahmad Hajinezhad ◽  
Marc A. Rosen
2013 ◽  
Author(s):  
Aaron Bodoh-Creed ◽  
JJrn Boehnke ◽  
Brent Richard Hickman
Keyword(s):  

2018 ◽  
Vol 12 (3) ◽  
pp. 181-187
Author(s):  
M. Erkan Kütük ◽  
L. Canan Dülger

An optimization study with kinetostatic analysis is performed on hybrid seven-bar press mechanism. This study is based on previous studies performed on planar hybrid seven-bar linkage. Dimensional synthesis is performed, and optimum link lengths for the mechanism are found. Optimization study is performed by using genetic algorithm (GA). Genetic Algorithm Toolbox is used with Optimization Toolbox in MATLAB®. The design variables and the constraints are used during design optimization. The objective function is determined and eight precision points are used. A seven-bar linkage system with two degrees of freedom is chosen as an example. Metal stamping operation with a dwell is taken as the case study. Having completed optimization, the kinetostatic analysis is performed. All forces on the links and the crank torques are calculated on the hybrid system with the optimized link lengths


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2589
Author(s):  
Jung J. Kim

This study presents an explosion-resistant hybrid system containing a steel slab and a carbon fiber-reinforced polymer (CFRP) frame. CFRP, which is a high-strength material, acts as an impact reflection part. Steel slab, which is a high-ductility material, plays a role as an impact energy absorption part. Based on the elastoplastic behavior of steel, a numerical model is proposed to simulate the dynamic responses of the hybrid system under the air pressure from an explosion. Based on this, a case study is conducted to analyze and identify the optimal design of the proposed hybrid system, which is subjected to an impact load condition. The observations from the case study show the optimal thicknesses of 8.2 and 7 mm for a steel slab and a ϕ100 mm CFRP pipe for the hybrid system, respectively. In addition, the ability of the proposed hybrid system to resist an uncertain explosion is demonstrated in the case study based on the reliability methodology.


Author(s):  
A. Cano ◽  
Paul Arévalo ◽  
F. Jurado

This research compared different sizing methods to improve the current autonomous hybrid system in the Galapagos Islands in 2031, analyzing the loss of power supply probability (LPSP).


2021 ◽  
pp. 102346
Author(s):  
Tamal Chowdhury ◽  
Hemal Chowdhury ◽  
Samiul Hasan ◽  
Md Salman Rahman ◽  
Muhammad Mostafa Kamal Bhuiya ◽  
...  

2021 ◽  
Vol 13 (11) ◽  
pp. 6115
Author(s):  
Moon Keun Kim ◽  
Khalid Osman Abdulkadir ◽  
Jiying Liu ◽  
Joon-Ho Choi ◽  
Huiqing Wen

This study explores the combination of photovoltaic (PV) panels with a reflector mounted on a building to improve electricity generation. Globally, PV panels have been widely used as a renewable energy technology. In order to obtain more solar irradiance and improve electricity output, this study presents an advanced strategy of a reflector combining PV panels mounted on a building in Calgary, Canada. Based on an experimental database of solar irradiances, the simulation presents an optimal shape designed and tilt angles of the reflector and consequently improves solar radiation gain and electricity outputs. Polished aluminum is selected as the reflector material, and the shape and angle are designed to minimize the interruption of direct solar radiation. The numerical approach demonstrates the improvement in performance using a PV panel tilted at 30°, 45°, 60°, and 75° and a reflector, tilted at 15.5° or allowed to be tilted flexibly. A reflector tilted at 15.5° can improve solar radiation gains, of the panel, by nearly 5.5–9.2% at lower tilt angles and 14.1–21.1% at higher tilt angles. Furthermore, the flexibly adjusted reflector can improve solar radiation gains on the PV panel, by nearly 12–15.6% at lower tilt angles and 20–26.5% at higher tilt angles. A reflector tilted at 15.5° improves the panel’s output electricity on average by 4–8% with the PV panel tilted at 30° and 45° respectively and 12–19 % with the PV panel tilted at 60° and 75°, annually. Moreover, a reflector that can be flexibly tilted improves electricity output on average by 9–12% with the PV panel tilted at 30° and 45° and 17–23% with the PV panel tilted at 60° and 75°. Therefore, the utilization of a reflector improves the performance of the PV panel while incurring a relatively low cost.


Sign in / Sign up

Export Citation Format

Share Document