Integrated simulation through the source-code coupling of component models from a modular simulation environment into a comprehensive building performance simulation tool

2009 ◽  
Vol 2 (2) ◽  
pp. 115-126 ◽  
Author(s):  
Weimin Wang ◽  
Ian Beausoleil-Morrison
2018 ◽  
Vol 40 (1) ◽  
pp. 30-46 ◽  
Author(s):  
Giorgos Petrou ◽  
Anna Mavrogianni ◽  
Phil Symonds ◽  
Anastasia Mylona ◽  
Dane Virk ◽  
...  

The accurate prediction of building indoor overheating risk is critical in order to mitigate its possible consequences on occupant health and wellbeing. The Chartered Institution of Building Services Engineers issued Technical Memorandum 59 (TM59) with the aim of achieving consistency in the modelling processes followed for the prediction of overheating risk in new dwellings. However, as each tool’s prediction may depend on its inherent assumptions, an inter-model comparison procedure was used to assess whether the choice of building performance simulation tool influences the overheating assessment. The predictions of two popular tools, IES VE and EnergyPlus, were compared for nine variations of a naturally ventilated, purpose built, London flat archetype, modelled under the default algorithm options. EnergyPlus predicted a high overheating risk according to TM59 criteria in seven out of the nine model variants, contrary to the low risk of all the IES VE variants. Analysis of heat transfer processes revealed that wind-driven ventilation and surface convection algorithms were the main sources of the observed discrepancies. The choice of simulation tool could thus influence the overheating risk assessment in flats, while the observed discrepancies in the simulation of air and heat transfer could have implications on other modelling applications. Practical application:Technical Memorandum 59 issued by the Chartered Institution of Building Services Engineers may be widely adopted within the industry to assist the prediction of overheating risk in new dwellings. This work suggests that the choice of building performance simulation tool can greatly influence the predicted overheating risk. Furthermore, the differences identified in the modelling of heat transfer processes could also impact other modelling applications. Following these results, the need for detailed empirical validation studies of naturally ventilated homes has been highlighted.


2017 ◽  
Vol 12 (1) ◽  
pp. 45-61 ◽  
Author(s):  
Xiaohuan Xie ◽  
Zhonghua Gou

INTRODUCTION Current green building practice has been largely advanced by an integrated design process. This integrated design process involves multiple disciplines, such as architecture, civil, mechanical, and electrical engineering. The design method heavily relies on utilizing building performance simulation to illustrate how design parameters affect the energy consumption and quality of the indoor environment before actual design decisions are made (Anderson, 2014). The architectural design tools in the integrated design process supersede traditional geometrical exploration instruments, such as Sketchup, Revit, ArchiCad, and Rhino (Negendahl, 2015). More building performance simulating tools, such as Ecotect, Computational Fluid Dynamics (CFD), Radiance, and EnergyPlus, have been developed to help architects measure building performance (e.g., natural ventilation, daylighting, solar radiation, and energy uses) in the design process and attain green building standards such as Leadership in Energy and Environmental Design (LEED). The information presented by these tools guide architects at a certain level in achieving green building goals. However, building simulation is generally beyond the architect's knowledge domain. Many architects have difficulty in understanding these technical terms and models, as well as their design implications. Therefore, specific consultants have emerged to help architects grasp the meanings of these numbers and models, which require architects to implement a high level of design collaboration and coordination (Aksamija, 2015; Gou & Lau, 2014). Simulation consultants can work in parallel with architects at the early design stage to intervene in the conceptual and schematic design; they may also work behind architects to verify the building performance after the design is finished and make their design green through technical alterations. Most existing literature argues for an early intervention of building performance simulation in the architectural design process and explores different algorithms or models for optimal intervention (Degens, Scholzen, & Odenbreit, 2015; Sick, Schade, Mourtada, Uh, & Grausam, 2014; Svetlana Olbina & Yvan Beliveau, 2007). However, the difference between early intervention and late verification is often not investigated. Few qualitative studies can help understand how the building performance simulation is actually implemented, and how it influences the quality of design solutions in addition to the quantity of performance outcomes. The current research presents two case studies that compare building performance simulation as an early intervention and a late verification tool in the architectural design process, which contextualizes the building simulation research in real building practices.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1134 ◽  
Author(s):  
Maria-Mar Fernandez-Antolin ◽  
José-Manuel del-Río ◽  
Fernando del Ama Gonzalo ◽  
Roberto-Alonso Gonzalez-Lezcano

This paper examines the actual knowledge regarding Building Performance Simulation Tools (BPSTs) of recent graduate architects in Spain. BPSTs quantify aspects of building performance that are relevant to design, construction, and operation. Recent graduate architects are those who have been awarded a first degree from a university or college and face their first professional experience. This article aims to identify the deficiencies within the current curricula of Spanish universities relating to BPSTs. The authors have surveyed 171 recent graduate architects, and the analysis of the data reveals the deficiencies in university education. Regarding the collected results, the Spanish university syllabi must undergo necessary modifications to encourage the use of simulation as a part of university training courses. The incorporation of energy simulation in such training courses can provide recent graduate architects with tools that would assist them during the design stage. The use of these tools is key in the development of innovative pedagogy-based teaching materials for the courses. In this sense, the present work aims to delve into the usage deficiencies associated with BPSTs and propose ways in which to bridge the gap between higher education and first professional experiences.


Sign in / Sign up

Export Citation Format

Share Document