scholarly journals SPLICELECT™: an adaptable cell surface display technology based on alternative splicing allowing the qualitative and quantitative prediction of secreted product at a single-cell level

mAbs ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 1709333
Author(s):  
Christel Aebischer-Gumy ◽  
Pierre Moretti ◽  
Romain Ollier ◽  
Christelle Ries Fecourt ◽  
François Rousseau ◽  
...  
2019 ◽  
Vol 21 (7) ◽  
pp. 1795-1808 ◽  
Author(s):  
Gregory Guirimand ◽  
Kentaro Inokuma ◽  
Takahiro Bamba ◽  
Mami Matsuda ◽  
Kenta Morita ◽  
...  

Xylitol is a major commodity chemical widely used in both the food and pharmaceutical industries.


2012 ◽  
Vol 40 (8) ◽  
pp. e57-e57 ◽  
Author(s):  
Nadya G. Gurskaya ◽  
Dmitry B. Staroverov ◽  
Lijuan Zhang ◽  
Arkady F. Fradkov ◽  
Nadezhda M. Markina ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Chih-Chi Liao ◽  
Chih-Hsuan Tsai ◽  
Huei-Ru Lo ◽  
Pey-Ru Lin ◽  
Chang-Chi Lin ◽  
...  

2011 ◽  
Vol 347-353 ◽  
pp. 3635-3640 ◽  
Author(s):  
Jian Zhang Lu ◽  
Qin Guo ◽  
Mei Lin Cui ◽  
Lu Yang ◽  
Shan Shan Du ◽  
...  

Laccases (1.10.3.2, p-diphenol: dioxygen oxidoreductases) is a family of blue copper-containing oxidases that are commonly found in bacteria, fungi and plants. It is able to oxidize and degrade a variety of aromatic compounds and other organic compounds. Due to this ability, laccases can serve environmental bioremediation processes and industrial purposes. Cell-surface display of enzymes is one of the most attractive applications in yeast. It is a effective utilization to construct the whole cell biocatalyst. The cDNA sequence of Trametes sp. C30 LAC3 was optimized and synthesized according to the codon bias of Saccharomyces Italic textcerevisiae, because codon optimization has been proved to be effective to maximize production of heterologous proteins in yeast. The genes encoding galactokinase (GAL1) promoter, α-mating factor 1 (MFα1) pre-pro secretion signal, fully codon-optimized LAC3, the 320 amino acids of C terminal of α-agglutinin, alcohol dehydrogenase (ADH1) terminator and kanMX cassette were amplified and cloned into YEplac181 to construct a cell-surface display vector called pGMAAK-lac3 with α-agglutinin as an anchor. Then pGMAAK-lac3 was transformed into S. cerevisiae. The results show LAC3 was immobilized and actively expressed on S. cerevisiae. However, the substrate specifity and activity were obviously changed. The displayed LAC3 lost the activity to phenolic substrate (guaiacol) and its activity to non-phenolic substrate (ABTS) was greatly reduced. To our knowledge, this was the first attempt to construct and express laccase through cell-surface display technology.


2013 ◽  
Vol 85 (3) ◽  
pp. 1753-1759 ◽  
Author(s):  
Akiko Kida ◽  
Masumi Iijima ◽  
Tomoaki Niimi ◽  
Andrés D. Maturana ◽  
Nobuo Yoshimoto ◽  
...  

2015 ◽  
Vol 11 (12) ◽  
pp. 845 ◽  
Author(s):  
Lior Faigenbloom ◽  
Nimrod D Rubinstein ◽  
Yoel Kloog ◽  
Itay Mayrose ◽  
Tal Pupko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document