Phosphorus recovery through struvite precipitation from wastewater: effect of the competitive ions

2014 ◽  
Vol 54 (9) ◽  
pp. 2468-2479 ◽  
Author(s):  
Nancy Y. Acelas ◽  
Elizabeth Flórez ◽  
Diana López
2011 ◽  
Vol 39 (12) ◽  
pp. 1099-1104 ◽  
Author(s):  
Samantha Antonini ◽  
Stefania Paris ◽  
Thomas Eichert ◽  
Joachim Clemens

2012 ◽  
Vol 65 (12) ◽  
pp. 2091-2097 ◽  
Author(s):  
Huanwen Li ◽  
Zhiping Ye ◽  
Ying Lin ◽  
Fengying Wang

Phosphorus releases into aquatic environment and its subsequent contribution to eutrophication have resulted in a widespread global pollution issue. However, phosphorus is a non-renewable source. The potential supplies of phosphorus are decreasing worldwide. Therefore, removal and recovery of phosphorus from the eutropic waters is important, emergent and necessary. In this research, experiments for recovering phosphate from eutropic waters by anion exchange combined with struvite precipitation were conducted. The results indicated that the prepared XDA-7 resin was an effective adsorbent for phosphate. The adsorption isotherm of XDA-7 resin was found to be a modified Freundlich type. The maximum phosphate adsorption (20.9 mg/g) occurred in the pH range of 6.0–8.0. Phosphate adsorbed on the XDA-7 resin was effectively desorbed with 8% NaCl solution, and the resin was able to be regenerated with 3% NaClO and 4% NaOH solutions. Phosphate desorbed from the resin was recovered as magnesium ammonium phosphate (struvite). The obtained struvite was analyzed by acid dissolution method, scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). The struvite precipitate was found to be 75.8% in purity, a high-value fertilizer.


2021 ◽  
Vol 13 (17) ◽  
pp. 9700
Author(s):  
Zicong Liao ◽  
Yongyou Hu ◽  
Yuancai Chen ◽  
Jianhua Cheng

Phosphorus is a nonrenewable and irreplaceable limited resource, and over 90% of phosphorus in influenttransfers into sludge in wastewater treatment plants. In this study, thermally activated peroxydisulfate (TAP) treatment was combined with struvite precipitation to enhance waste activated sludge (WAS) dewaterability and phosphorus recovery. TAP simultaneously enhanced dewaterability and solubilization of WAS. The optimal conditions of TAP treatment were PDS dosage 2.0 mmol/g TSS, 80 °C, pH 4.0~7.0 and 40 min, which enhanced dewaterability (capillary suction time (CST) from 94.2 s to 28.5 s) and solubilization (PO43−-P 177.71 mg/L, NH4+-N 287.22 mg/L and SCOD 10754 mg/L). Radical oxidation disintegrated tightly bound extracellular polymeric substances (TB-EPS) and further released bound water. The acidification effect neutralized the negative surface charge of colloid particles. Compared with thermal hydrolysis, TAP effectively promoted the release of PO43−, NH4+ and SCOD. Cation exchange removed most Ca and Al of the TAP treated supernatant. The optimal conditions of struvite precipitation were Mg/P 1.4 and pH 10.0, which achieved phosphorus recovery of 95.06% and struvite purity of 94.94%. The income obtained by struvite adequately covers the cost of struvite precipitation and the cost of WAS treatment is acceptable.


Resources ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 54 ◽  
Author(s):  
Saba Daneshgar ◽  
Armando Buttafava ◽  
Arianna Callegari ◽  
Andrea Capodaglio

Phosphorus is a potential environmental pollutant, which could lead to the eutrophication of water bodies. For this reason, wastewater treatment plants worldwide are often designed and operated to eliminate phosphorous from effluents, at substantial cost. At the same time, phosphorus is an essential nutrient for agriculture and, consequently, human life. Data seem to suggest that the world will run out of phosphorus by around 2300, in the best case scenario, although even shorter estimates exist. This situation evokes the need for more efficient phosphorus recovery technologies, in order to meet current water quality requirements and—at the same time—critical future phosphorous needs. Chemical precipitation is the main process for achieving a phosphorus-containing mineral suitable for reuse as a fertilizer, where Struvite is an example of such a product. In this study chemical equilibrium of struvite precipitation was simulated using US Geological Survey (USGS)’ PHREEQC model, and results were compared to laboratory precipitation tests to evaluate struvite recovery efficiency under various conditions. pH had the most significant effect on the results and P recovery of >90% was achieved at pH = 9.5. Simulations indicated that struvite precipitation is affected by the presence of Amorphous Calcium Phosphate (ACP) and calcite in the final product of the process. The model showed great potential for predicting equilibrium conditions, and could be very helpful for future optimization of the process.


2018 ◽  
Vol 144 (10) ◽  
pp. 04018101 ◽  
Author(s):  
Min Zheng ◽  
Tao Xie ◽  
Jiyun Li ◽  
Kangning Xu ◽  
Chengwen Wang

Sign in / Sign up

Export Citation Format

Share Document