Phosphorus recovery from swine wastewater by struvite precipitation: compositions and heavy metals in the precipitates

2015 ◽  
Vol 57 (22) ◽  
pp. 10361-10369 ◽  
Author(s):  
Ying Shen ◽  
Zhi-Long Ye ◽  
Xin Ye ◽  
Jie Wu ◽  
Shaohua Chen
2014 ◽  
Vol 9 (4) ◽  
pp. 566-574 ◽  
Author(s):  
U. Ballabio ◽  
T. Vollmeier

Thermal treatment is an efficient solution for the sewage sludge disposal, able to deal with the environmental problems related to some harmful elements inside sludge itself, as heavy metals, hormones, pharmaceutical derivates etc. This presentation wants to show the several reliable technologies available today, able to fulfil the requirements for efficiency and cheapness. Other solutions with interesting potentialities are now in a research phase, and they show promising future possibilities of application also from the point of view of the environmental acceptability related to these technologies. In addition to the solutions for the sludge thermal treatment, it will be shown the issue of the phosphorus recovery from sewage sludge, a topical issue that will influence the choices for the sludge disposal in the next years.


2011 ◽  
Vol 39 (12) ◽  
pp. 1099-1104 ◽  
Author(s):  
Samantha Antonini ◽  
Stefania Paris ◽  
Thomas Eichert ◽  
Joachim Clemens

2012 ◽  
Vol 65 (12) ◽  
pp. 2091-2097 ◽  
Author(s):  
Huanwen Li ◽  
Zhiping Ye ◽  
Ying Lin ◽  
Fengying Wang

Phosphorus releases into aquatic environment and its subsequent contribution to eutrophication have resulted in a widespread global pollution issue. However, phosphorus is a non-renewable source. The potential supplies of phosphorus are decreasing worldwide. Therefore, removal and recovery of phosphorus from the eutropic waters is important, emergent and necessary. In this research, experiments for recovering phosphate from eutropic waters by anion exchange combined with struvite precipitation were conducted. The results indicated that the prepared XDA-7 resin was an effective adsorbent for phosphate. The adsorption isotherm of XDA-7 resin was found to be a modified Freundlich type. The maximum phosphate adsorption (20.9 mg/g) occurred in the pH range of 6.0–8.0. Phosphate adsorbed on the XDA-7 resin was effectively desorbed with 8% NaCl solution, and the resin was able to be regenerated with 3% NaClO and 4% NaOH solutions. Phosphate desorbed from the resin was recovered as magnesium ammonium phosphate (struvite). The obtained struvite was analyzed by acid dissolution method, scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). The struvite precipitate was found to be 75.8% in purity, a high-value fertilizer.


2012 ◽  
Vol 610-613 ◽  
pp. 2350-2355 ◽  
Author(s):  
Ji Dan Liu ◽  
Zu Xin Xu ◽  
Wei Gang Wang ◽  
Wei Jin

Recovering nitrogen and phosphorus through struvite crystallization from swine wastewater has gained increasing interest. However, effluents of anaerobic digested swine wastewater contains other constituents including complex and hardly definited organic compounds, which may hinder the formation of struvite crystal and affect the purity of the precipitates by forming other insoluble minerals. Struvite precipitation was carried out at laboratory scale by adding magnesium chloride and potassium hydrogen as external sources of magnesium and phosphorus to equal Mg: N: P molar ratio, respectively, and regulating the pH at 9.5 in the absence and presence of organic compounds. Exceeded 70% phosphate and ammonium reduction were obtained. The recovered products were detected and analyzed by scanning electron microscope (SEM), X-ray diffraction (XRD) and chemical methods, which were proved to be struvite crystals. The soluble organic compounds had less than 6% changes in amount during struvite precipitation and it was proved that the removal of TCOD during the precipitation of struvite may be attributed to the co-precipitation of struvite. The results indicate that struvite precipitation could be a viable method of ammonium removal in the presence of organic compounds from anaerobically digested swine manure.


2012 ◽  
Vol 03 (08) ◽  
pp. 871-877 ◽  
Author(s):  
Jorge A. Cortes-Esquivel ◽  
Germán Giácoman-Vallejos ◽  
Icela D. Barceló-Quintal ◽  
Roger Méndez-Novelo ◽  
María C. Ponce-Caballero

2010 ◽  
Vol 176 (1-3) ◽  
pp. 1083-1088 ◽  
Author(s):  
Zhi-Long Ye ◽  
Shao-Hua Chen ◽  
Shu-Mei Wang ◽  
Li-Feng Lin ◽  
Yi-Jun Yan ◽  
...  

2011 ◽  
Vol 64 (2) ◽  
pp. 334-340 ◽  
Author(s):  
Zhi-Long Ye ◽  
Shao-Hua Chen ◽  
Min Lu ◽  
Jian-Wen Shi ◽  
Li-Feng Lin ◽  
...  

Recovering nitrogen and phosphorus through struvite (MgNH4PO4·6H2O) crystallization from swine wastewater has gained increasing interest. However, swine wastewater contains complex compositions, which may hinder the formation of struvite crystal and affect the purity of the precipitates by forming other insoluble minerals. In this work, experiments were carried out to evaluate struvite precipitation in the anaerobically digested swine wastewater, with dosing bittern as a low-cost magnesium source. Exceeded 90% phosphate removal and 23–29% ammonium reduction were obtained. FTIR, XRD and mass balance analysis were combined to analyze the species of precipitated minerals. Results showed that the precipitates were struvite, mixed with amorphous calcium phosphate (ACP) and brucite. The presence of Ca2+ diminished the percentage of struvite and gave rise to ACP formation. Controlling pH below 9.5 and bittern dosage above 1% (w/w) could inhibit ACP precipitation and harvest a highly pure struvite crystal product.


Sign in / Sign up

Export Citation Format

Share Document