Synthesis and physicochemical characterization of ZnMgNiAl-CO3-layered double hydroxide and evaluation of its sodium dodecylbenzenesulfonate removal efficiency

2015 ◽  
Vol 57 (28) ◽  
pp. 13132-13143 ◽  
Author(s):  
Chafia Tiar ◽  
Mokhtar Boutahala ◽  
Assia Benhouria ◽  
Hassina Zaghouane-Boudiaf
2014 ◽  
Vol 955-959 ◽  
pp. 47-50
Author(s):  
Dan Chen ◽  
Xiao Long Ma

We fabricated new magnetic material CuFe2O4/Zn2Cr-LDH by the combination of CuFe2O4 and layered double hydroxide (LDH) through two steps. CuFe2O4 was prepared by sol-gel method with the assistant of citric acid, which was used in synthesis of the composite via microwave hydrothermal method subsequently. The physicochemical properties of the composite was characterized by several techniques, such as X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Vibrating sample magnetometer (VSM) and Thermogravimetry-differential thermal analysis (TG-DTA). The magnetic composite reveals several advantage of LDH structure and spinel ferrite oxide and is potential for the application of heterogeneous catalysis.


2013 ◽  
Vol 734-737 ◽  
pp. 2168-2171
Author(s):  
Dan Chen ◽  
Xiao Long Ma ◽  
Yang Li

A new magnetic Fe3O4/MO-intercalated-LDH composite has been synthesized by combination of Fe3O4, layered double hydroxide (LDH) and methyl orange (MO). Fe3O4/Zn2CrLDH and Fe3O4/MO-intercalated-LDH were obtained via two-step microwave hydrothermal and anion exchange method. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and vibrating sample magnetometer (VSM) were conducted to characterize the as-prepared samples. The latter exhibited that basal spacing of Zn2Cr-LDH is 1.18 nm. The value of saturation magnetization (Ms) is 20.5 emu/g. In addition, the amounts of adsorbed MO reached 1.54 mmol/g. Therefore, the material shows several advantages for the removal of pollutants.


Langmuir ◽  
2009 ◽  
Vol 25 (18) ◽  
pp. 10980-10986 ◽  
Author(s):  
Sujata Mandal ◽  
Didier Tichit ◽  
Dan A. Lerner ◽  
Nathalie Marcotte

2017 ◽  
Vol 887 ◽  
pp. 100-103
Author(s):  
Siti Halimah Sarijo ◽  
Monica Limau Jadam ◽  
Z. Jubri

A nonsteroidal drug, flufenamic acid (FA) was successfully intercalated into magnesium-aluminium-layered double hydroxide, MAL for the formation of magnesium-aluminium-flufenamate-layered double hydroxide, MAF by self-assembly technique. As a result of the successful intercalation, basal spacing increased from 9.8 Å in the MAL to 23.5 Å in the MAF hybrid nanocomposite. The FTIR spectra of the MAF hybrid nanocomposite show resemblance peaks of the MAL and FA suggesting the inclusion of the organic compound into the MAL interlamellae. The percentage loading of FA was found to be 74.4 % (w/w) calculated from the percentage of carbon in the resulting material, MAF.


2021 ◽  
pp. 116774
Author(s):  
Fataneh Vasheghani Farahani ◽  
Mohammad Hassan Amini ◽  
Seyed Hamid Ahmadi ◽  
Seyed Amirabbas Zakaria

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Garima Rathee ◽  
Amardeep Awasthi ◽  
Damini Sood ◽  
Ravi Tomar ◽  
Vartika Tomar ◽  
...  

Abstract It would be of great significance to introduce a new biocompatible Layered Double Hydroxide (LDH) for the efficient remediation of wastewater. Herein, we designed a facile, biocompatible and environmental friendly layered double hydroxide (LDH) of NiFeTi for the very first time by the hydrothermal route. The materialization of NiFeTi LDH was confirmed by FTIR, XRD and Raman studies. BET results revealed the high surface area (106 m2/g) and the morphological studies (FESEM and TEM) portrayed the sheets-like structure of NiFeTi nanoparticles. The material so obtained was employed as an efficient adsorbent for the removal of organic dyes from synthetic waste water. The dye removal study showed >96% efficiency for the removal of methyl orange, congo red, methyl blue and orange G, which revealed the superiority of material for decontamination of waste water. The maximum removal (90%) of dyes was attained within 2 min of initiation of the adsorption process which supported the ultrafast removal efficiency. This ultrafast removal efficiency was attributed to high surface area and large concentration of -OH and CO32− groups present in NiFeTi LDH. In addition, the reusability was also performed up to three cycles with 96, 90 and 88% efficiency for methyl orange. Furthermore, the biocompatibility test on MHS cell lines were also carried which revealed the non-toxic nature of NiFeTi LDH at lower concentration (100% cell viability at 15.6 μg/ml). Overall, we offer a facile surfactant free method for the synthesis of NiFeTi LDH which is efficient for decontamination of anionic dyes from water and also non-toxic.


Sign in / Sign up

Export Citation Format

Share Document