Investigation of layered double hydroxide/carbon dot nanocomposite on removal efficiency of Pb2+ from aqueous solution

2021 ◽  
pp. 116774
Author(s):  
Fataneh Vasheghani Farahani ◽  
Mohammad Hassan Amini ◽  
Seyed Hamid Ahmadi ◽  
Seyed Amirabbas Zakaria
2010 ◽  
Vol 20 (22) ◽  
pp. 4684 ◽  
Author(s):  
Yunfeng Xu ◽  
Yingchun Dai ◽  
Jizhi Zhou ◽  
Zhi Ping Xu ◽  
Guangren Qian ◽  
...  

2018 ◽  
Vol 6 (21) ◽  
pp. 10008-10018 ◽  
Author(s):  
Paulmanickam Koilraj ◽  
Yuta Kamura ◽  
Keiko Sasaki

A synergetic co-immobilization of a Sr2+ and SeO42− was evaluated on sustainable multifunctional graphene oxide and carbon-dot based layered double hydroxide nanocomposites.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Garima Rathee ◽  
Amardeep Awasthi ◽  
Damini Sood ◽  
Ravi Tomar ◽  
Vartika Tomar ◽  
...  

Abstract It would be of great significance to introduce a new biocompatible Layered Double Hydroxide (LDH) for the efficient remediation of wastewater. Herein, we designed a facile, biocompatible and environmental friendly layered double hydroxide (LDH) of NiFeTi for the very first time by the hydrothermal route. The materialization of NiFeTi LDH was confirmed by FTIR, XRD and Raman studies. BET results revealed the high surface area (106 m2/g) and the morphological studies (FESEM and TEM) portrayed the sheets-like structure of NiFeTi nanoparticles. The material so obtained was employed as an efficient adsorbent for the removal of organic dyes from synthetic waste water. The dye removal study showed >96% efficiency for the removal of methyl orange, congo red, methyl blue and orange G, which revealed the superiority of material for decontamination of waste water. The maximum removal (90%) of dyes was attained within 2 min of initiation of the adsorption process which supported the ultrafast removal efficiency. This ultrafast removal efficiency was attributed to high surface area and large concentration of -OH and CO32− groups present in NiFeTi LDH. In addition, the reusability was also performed up to three cycles with 96, 90 and 88% efficiency for methyl orange. Furthermore, the biocompatibility test on MHS cell lines were also carried which revealed the non-toxic nature of NiFeTi LDH at lower concentration (100% cell viability at 15.6 μg/ml). Overall, we offer a facile surfactant free method for the synthesis of NiFeTi LDH which is efficient for decontamination of anionic dyes from water and also non-toxic.


2018 ◽  
Vol 47 (48) ◽  
pp. 17342-17348 ◽  
Author(s):  
Euiyoung Jung ◽  
Jae Kyeom Kim ◽  
Hyungsuk Choi ◽  
Min Hyung Lee ◽  
Taekyung Yu

Transition metal LDH nanoplates were synthesized by heating an aqueous solution containing a metal salt, PEG, and octylamine. The LDH nanoplates showed comparable electrochemical catalytic performance for the oxygen evolution reaction.


Crystals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 342 ◽  
Author(s):  
Kwanjira Panplado ◽  
Maliwan Subsadsana ◽  
Supalax Srijaranai ◽  
Sira Sansuk

This work demonstrates a simple approach for the efficient removal of tetracycline (TC) antibiotic from an aqueous solution. The in situ-adsorption removal method involved instant precipitation formation of mixed metal hydroxides (MMHs), which could immediately act as a sorbent for capturing TC from an aqueous solution, by employing layered double hydroxide (LDH) components including magnesium and aluminum ions in alkaline conditions. By using this approach, 100% removal of TC can be accomplished within 4 min under optimized conditions. The fast removal possibly resulted from an instantaneous adsorption of TC molecules onto the charged surface of MMHs via hydrogen bonding and electrostatically induced attraction. The results revealed that our removal technique was superior to the use of LDH as a sorbent in terms of both removal kinetics and efficiency. Moreover, the recovery of captured TC was tested under the influence of various common anions. It was found that 98% recovery could be simply achieved by using phosphate, possibly due to its highly charged density. Furthermore, this method was successful for efficient removal of TC in real environmental water samples.


2020 ◽  
Vol 177 ◽  
pp. 423-430 ◽  
Author(s):  
Ayodeji Olugbenga Ifebajo ◽  
Akeem Adeyemi Oladipo ◽  
Mustafa Gazi

Sign in / Sign up

Export Citation Format

Share Document