scholarly journals Methods to analyze cell type-specific gene expression profiles from heterogeneous cell populations

2016 ◽  
Vol 20 (3) ◽  
pp. 113-117 ◽  
Author(s):  
Jane Jung ◽  
Hosung Jung
2013 ◽  
Vol 14 (1) ◽  
pp. 89 ◽  
Author(s):  
Yi Zhong ◽  
Ying-Wooi Wan ◽  
Kaifang Pang ◽  
Lionel ML Chow ◽  
Zhandong Liu

Author(s):  
Johan Gustafsson ◽  
Felix Held ◽  
Jonathan Robinson ◽  
Elias Björnson ◽  
Rebecka Jörnsten ◽  
...  

Abstract Background Cell-type specific gene expression profiles are needed for many computational methods operating on bulk RNA-Seq samples, such as deconvolution of cell-type fractions and digital cytometry. However, the gene expression profile of a cell type can vary substantially due to both technical factors and biological differences in cell state and surroundings, reducing the efficacy of such methods. Here, we investigated which factors contribute most to this variation. Results We evaluated different normalization methods, quantified the magnitude of variation introduced by different sources, and examined the differences between UMI-based single-cell RNA-Seq and bulk RNA-Seq. We applied methods such as random forest regression to a collection of publicly available bulk and single-cell RNA-Seq datasets containing B and T cells, and found that the technical variation across laboratories is of the same magnitude as the biological variation across cell types. Tissue of origin and cell subtype are less important but still substantial factors, while the difference between individuals is relatively small. We also show that much of the differences between UMI-based single-cell and bulk RNA-Seq methods can be explained by the number of read duplicates per mRNA molecule in the single-cell sample.Conclusions Our work shows the importance of either matching or correcting for technical factors when creating cell-type specific gene expression profiles that are to be used together with bulk samples.


2020 ◽  
Author(s):  
Johan Gustafsson ◽  
Felix Held ◽  
Jonathan Robinson ◽  
Elias Björnson ◽  
Rebecka Jörnsten ◽  
...  

Abstract Cell-type specific gene expression profiles are needed for many computational methods operating on bulk RNA-Seq samples, such as deconvolution of cell-type fractions and digital cytometry. However, the gene expression profile of a cell type can vary substantially due to both technical factors and biological differences in cell state and surroundings, reducing the efficacy of such methods. Here, we investigated which factors contribute most to this variation. We evaluated different normalization methods, quantified the variance explained by different factors, evaluated the effect on deconvolution of cell type fractions, and examined the differences between UMI-based single-cell RNA-Seq and bulk RNA-Seq. We investigated a collection of publicly available bulk and single-cell RNA-Seq datasets containing B and T cells, and found that the technical variation across laboratories is substantial, even for genes specifically selected for deconvolution, and has a confounding effect on deconvolution. Tissue of origin is also a substantial factor, highlighting the challenge of applying cell type profiles derived from blood on mixtures from other tissues. We also show that much of the differences between UMI-based single-cell and bulk RNA-Seq methods can be explained by the number of read duplicates per mRNA molecule in the single-cell sample. Our work shows the importance of either matching or correcting for technical factors when creating cell-type specific gene expression profiles that are to be used together with bulk samples.


2018 ◽  
Author(s):  
Kai Kang ◽  
Qian Meng ◽  
Igor Shats ◽  
David M. Umbach ◽  
Melissa Li ◽  
...  

AbstractThe cell type composition of many biological tissues varies widely across samples. Such sample heterogeneity hampers efforts to probe the role of each cell type in the tissue microenvironment. Current approaches that address this issue have drawbacks. Cell sorting or single-cell based experimental techniques disrupt in situ interactions and alter physiological status of cells in tissues. Computational methods are flexible and promising; but they often estimate either sample-specific proportions of each cell type or cell-type-specific gene expression profiles, not both, by requiring the other as input. We introduce a computational Complete Deconvolution method that can estimate both sample-specific proportions of each cell type and cell-type-specific gene expression profiles simultaneously using bulk RNA-Seq data only (CDSeq). We assessed our method’s performance using several synthetic and experimental mixtures of varied but known cell type composition and compared its performance to the performance of two state-of-the art deconvolution methods on the same mixtures. The results showed CDSeq can estimate both sample-specific proportions of each component cell type and cell-typespecificgene expression profiles with high accuracy. CDSeq holds promise for computationally deciphering complex mixtures of cell types, each with differing expression profiles, using RNA-seq data measured in bulk tissue (MATLAB code is available at https://github.com/kkang7/CDSeq_011).


2020 ◽  
Author(s):  
Vimalathithan Devaraj ◽  
Biplab Bose

AbstractThe expression of a gene is commonly estimated by quantitative PCR (qPCR) using RNA isolated from a large number of pooled cells. Such pooled samples often have subpopulations of cells with different levels of expression of the target gene. Estimation of gene expression from an ensemble of cells obscures the pattern of expression in different subpopulations. Physical separation of various subpopulations is a demanding task. We have developed a computational tool, Deconvolution of Ensemble through Bayes-approach (DEBay), to estimate cell type-specific gene expression from qPCR data of a mixed population. DEBay estimates Normalized Gene Expression Coefficient (NGEC), which is a relative measure of the expression of the target gene in each cell type in a population. NGEC has a direct algebraic correspondence with the normalized fold change in gene expression measured by qPCR. DEBay can deconvolute both time-dependent and -independent gene expression profiles. It uses the Bayesian method of model selection and parameter estimation. We have evaluated DEBay using synthetic and real experimental data. DEBay is implemented in Python. A GUI of DEBay and its source code are available for download at SourceForge (https://sourceforge.net/projects/debay).


Brain ◽  
2020 ◽  
Author(s):  
Kicheol Kim ◽  
Anne-Katrin Pröbstel ◽  
Ryan Baumann ◽  
Julia Dyckow ◽  
James Landefeld ◽  
...  

Abstract Multiple sclerosis is an autoimmune disease of the CNS in which both genetic and environmental factors are involved. Genome-wide association studies revealed more than 200 risk loci, most of which harbour genes primarily expressed in immune cells. However, whether genetic differences are translated into cell-specific gene expression profiles and to what extent these are altered in patients with multiple sclerosis are still open questions in the field. To assess cell type-specific gene expression in a large cohort of patients with multiple sclerosis, we sequenced the whole transcriptome of fluorescence-activated cell sorted T cells (CD4+ and CD8+) and CD14+ monocytes from treatment-naive patients with multiple sclerosis (n = 106) and healthy subjects (n = 22). We identified 479 differentially expressed genes in CD4+ T cells, 435 in monocytes, and 54 in CD8+ T cells. Importantly, in CD4+ T cells, we discovered upregulated transcripts from the NAE1 gene, a critical subunit of the NEDD8 activating enzyme, which activates the neddylation pathway, a post-translational modification analogous to ubiquitination. Finally, we demonstrated that inhibition of NEDD8 activating enzyme using the specific inhibitor pevonedistat (MLN4924) significantly ameliorated disease severity in murine experimental autoimmune encephalomyelitis. Our findings provide novel insights into multiple sclerosis-associated gene regulation unravelling neddylation as a crucial pathway in multiple sclerosis pathogenesis with implications for the development of tailored disease-modifying agents.


Sign in / Sign up

Export Citation Format

Share Document