Land surface emissivity retrieval from multiple vegetation indices: a comparative study over India

2019 ◽  
Vol 11 (2) ◽  
pp. 176-185 ◽  
Author(s):  
T. Kodimalar ◽  
R. Vidhya ◽  
R. Eswar
2019 ◽  
Vol 11 (4) ◽  
pp. 390 ◽  
Author(s):  
Elnaz Neinavaz ◽  
Roshanak Darvishzadeh ◽  
Andrew Skidmore ◽  
Haidi Abdullah

Leaf area index (LAI) has been investigated in multiple studies, either by means of visible/near-infrared and shortwave-infrared or thermal infrared remotely sensed data, with various degrees of accuracy. However, it is not yet known how the integration of visible/near and shortwave-infrared and thermal infrared data affect estimates of LAI. In this study, we examined the utility of Landsat-8 thermal infrared data together with its spectral data from the visible/near and shortwave-infrared region to quantify the LAI of a mixed temperate forest in Germany. A field campaign was carried out in August 2015, in the Bavarian Forest National Park, concurrent with the time of the Landsat-8 overpass, and a number of forest structural parameters, including LAI and proportion of vegetation cover, were measured for 37 plots. A normalised difference vegetation index threshold method was applied to calculate land surface emissivity and land surface temperature and their relations to LAI were investigated. Next, the relation between LAI and eight commonly used vegetation indices were examined using the visible/near-infrared and shortwave-infrared remote sensing data. Finally, the artificial neural network was used to predict the LAI using: (i) reflectance data from the Landsat-8 operational land imager (OLI) sensor; (ii) reflectance data from the OLI sensor and the land surface emissivity; and (iii) reflectance data from the OLI sensor and land surface temperature. A stronger relationship was observed between LAI and land surface emissivity compared to that between LAI and land surface temperature. In general, LAI was predicted with relatively low accuracy by means of the vegetation indices. Among the studied vegetation indices, the modified vegetation index had the highest accuracy for LAI prediction (R2CV = 0.33, RMSECV = 1.21 m2m−2). Nevertheless, using the visible/near-infrared and shortwave-infrared spectral data in the artificial neural network, the prediction accuracy of LAI increased (R2CV = 0.58, RMSECV = 0.83 m2m−2). The integration of reflectance and land surface emissivity significantly improved the prediction accuracy of the LAI (R2CV = 0.81, RMSECV = 0.63 m2m−2). For the first time, our results demonstrate that the combination of Landsat-8 reflectance spectral data from the visible/near-infrared and shortwave-infrared domain and thermal infrared data can boost the estimation accuracy of the LAI in a forest ecosystem. This finding has implication for the prediction of other vegetation biophysical, or possibly biochemical variables using thermal infrared satellite remote sensing data, as well as regional mapping of LAI when coupled with a canopy radiative transfer model.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Caixia Gao ◽  
Enyu Zhao ◽  
Chuanrong Li ◽  
Yonggang Qian ◽  
Lingling Ma ◽  
...  

The aim of this study is to evaluate the aerosol influence on LST retrieval with two algorithms (split-window (SW) method and a four-channel based method) using simulated data under typical conditions. The results show that the root mean square error (RMSE) decreases to approximately 2.3 K for SW method and 1.5 K for four channel based method when VZA = 60° and visibility = 3 km; an RMSE would be increased by approximately 1.0 K when visibility varies from 3 km to 23 km. Moreover, a detailed sensitivity analysis under a visibility of 3 km and 23 km is performed in terms of uncertainties of land surface emissivity (LSE), water vapor content (WVC), and instrument noise, respectively. It is noted that the four-channel based method is more sensitive to LSE than SW method, especially for dry atmosphere; LST error caused by a WVC uncertainty of 20% is within 1.5 K for SW method and within 0.8 K for four-channel based method; the instrument noise would introduce LST error with a maximum standard deviation of 0.5 K and 0.04 K for the four-channel based method and SW method, respectively.


2018 ◽  
Vol 35 (6) ◽  
pp. 1283-1298 ◽  
Author(s):  
X. Zhuge ◽  
X. Zou ◽  
F. Weng ◽  
M. Sun

AbstractThis study compares the simulation biases of Advanced Himawari Imager (AHI) brightness temperature to observations made at night over China through the use of three land surface emissivity (LSE) datasets. The University of Wisconsin–Madison High Spectral Resolution Emissivity dataset, the Combined Advanced Spaceborne Thermal Emission and Reflection Radiometer and Moderate Resolution Imaging Spectroradiometer Emissivity database over Land High Spectral Resolution Emissivity dataset, and the International Geosphere–Biosphere Programme (IGBP) infrared LSE module, as well as land skin temperature observations from the National Basic Meteorological Observing stations in China are used as inputs to the Community Radiative Transfer Model. The results suggest that the standard deviations of AHI observations minus background simulations (OMBs) are largely consistent for the three LSE datasets. Also, negative biases of the OMBs of brightness temperature uniformly occur for each of the three datasets. There are no significant differences in OMB biases estimated with the three LSE datasets over cropland and forest surface types for all five AHI surface-sensitive channels. Over the grassland surface type, significant differences (~0.8 K) are found at the 10.4-, 11.2-, and 12.4-μm channels if using the IGBP dataset. Over nonvegetated surface types (e.g., sandy land, gobi, and bare rock), the lack of a monthly variation in IGBP LSE introduces large negative biases for the 3.9- and 8.6-μm channels, which are greater than those from the two other LSE datasets. Thus, improvements in simulating AHI infrared surface-sensitive channels can be made when using spatially and temporally varying LSE estimates.


2010 ◽  
Vol 115 (D22) ◽  
Author(s):  
Zhenglong Li ◽  
Jun Li ◽  
Xin Jin ◽  
Timothy J. Schmit ◽  
Eva E. Borbas ◽  
...  

2020 ◽  
Vol 57 (21) ◽  
pp. 212801
Author(s):  
官元红 Guan Yuanhong ◽  
王文君 Wang Wenjun ◽  
陆其峰 Lu Qifeng ◽  
鲍艳松 Bao Yansong ◽  
郑婷文 Zheng Tingwen

2012 ◽  
Vol 20 (22) ◽  
pp. 24761 ◽  
Author(s):  
Hua Wu ◽  
Ning Wang ◽  
Li Ni ◽  
Bo-Hui Tang ◽  
Zhao-Liang Li

Sign in / Sign up

Export Citation Format

Share Document