scholarly journals Differential gene expression and gene-set enrichment analysis in Caco-2 monolayers during a 30-day timeline with Dexamethasone exposure

2019 ◽  
Vol 7 (3) ◽  
pp. e1651597 ◽  
Author(s):  
J.M. Robinson ◽  
S. Turkington ◽  
S.A. Abey ◽  
N. Kenea ◽  
W.A. Henderson
2014 ◽  
Vol 13s1 ◽  
pp. CIN.S13882 ◽  
Author(s):  
Binghuang Cai ◽  
Xia Jiang

Analyzing biological system abnormalities in cancer patients based on measures of biological entities, such as gene expression levels, is an important and challenging problem. This paper applies existing methods, Gene Set Enrichment Analysis and Signaling Pathway Impact Analysis, to pathway abnormality analysis in lung cancer using microarray gene expression data. Gene expression data from studies of Lung Squamous Cell Carcinoma (LUSC) in The Cancer Genome Atlas project, and pathway gene set data from the Kyoto Encyclopedia of Genes and Genomes were used to analyze the relationship between pathways and phenotypes. Results, in the form of pathway rankings, indicate that some pathways may behave abnormally in LUSC. For example, both the cell cycle and viral carcinogenesis pathways ranked very high in LUSC. Furthermore, some pathways that are known to be associated with cancer, such as the p53 and the PI3K-Akt signal transduction pathways, were found to rank high in LUSC. Other pathways, such as bladder cancer and thyroid cancer pathways, were also ranked high in LUSC.


PLoS ONE ◽  
2014 ◽  
Vol 9 (9) ◽  
pp. e107629 ◽  
Author(s):  
Pui Shan Wong ◽  
Michihiro Tanaka ◽  
Yoshihiko Sunaga ◽  
Masayoshi Tanaka ◽  
Takeaki Taniguchi ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Junyu Huo ◽  
Liqun Wu ◽  
Yunjin Zang

BackgroundThe high mutation rate of TP53 in hepatocellular carcinoma (HCC) makes it an attractive potential therapeutic target. However, the mechanism by which TP53 mutation affects the prognosis of HCC is not fully understood.Material and ApproachThis study downloaded a gene expression profile and clinical-related information from The Cancer Genome Atlas (TCGA) database and the international genome consortium (ICGC) database. We used Gene Set Enrichment Analysis (GSEA) to determine the difference in gene expression patterns between HCC samples with wild-type TP53 (n=258) and mutant TP53 (n=116) in the TCGA cohort. We screened prognosis-related genes by univariate Cox regression analysis and Kaplan–Meier (KM) survival analysis. We constructed a six-gene prognostic signature in the TCGA training group (n=184) by Lasso and multivariate Cox regression analysis. To assess the predictive capability and applicability of the signature in HCC, we conducted internal validation, external validation, integrated analysis and subgroup analysis.ResultsA prognostic signature consisting of six genes (EIF2S1, SEC61A1, CDC42EP2, SRM, GRM8, and TBCD) showed good performance in predicting the prognosis of HCC. The area under the curve (AUC) values of the ROC curve of 1-, 2-, and 3-year survival of the model were all greater than 0.7 in each independent cohort (internal testing cohort, n = 181; TCGA cohort, n = 365; ICGC cohort, n = 229; whole cohort, n = 594; subgroup, n = 9). Importantly, by gene set variation analysis (GSVA) and the single sample gene set enrichment analysis (ssGSEA) method, we found three possible causes that may lead to poor prognosis of HCC: high proliferative activity, low metabolic activity and immunosuppression.ConclusionOur study provides a reliable method for the prognostic risk assessment of HCC and has great potential for clinical transformation.


2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii19-iii19
Author(s):  
N Rippaus ◽  
J Manning ◽  
A Droop ◽  
M Al-Jabri ◽  
M Care ◽  
...  

Abstract BACKGROUND Glioblastoma (GBM) tumours recur following standard treatment in almost all cases. We use ‘omics technologies to simultaneously profile pairs of primary and matched recurrent GBM to specifically identify and characterise the cells that resisted treatment, with the aim of determining how to more effectively kill them. MATERIAL AND METHODS We have analysed high coverage RNAseq data from pairs of GBM tumours: primary de novo tumour and matched local recurrence from patients that underwent standard therapy. Our original cohort constituted 23 pairs and our validation cohort was an additional 22 pairs. We also cultured two plates of spheroids directly from a patient’s GBM, treating one with radiation and temozolomide. We monitored growth and captured and sequenced RNA from single cells at two time-points: one week post-treatment when the deviation between untreated and treated spheroid growth curves was most pronounced; and three weeks post-treatment when the growth rate of treated spheroids had recovered. We investigated differential gene expression between primary and recurrent pairs, and single cells pre- and post-treatment, and performed a bespoke per patient gene set enrichment analysis. RESULTS Differential gene expression analysis in 23 tumour pairs indicated a treatment-induced shift in cell states linked to normal neurogenesis and prompted us to develop a novel gene set enrichment analysis approach to identify gene regulatory factors that may orchestrate such a shift. This revealed the significant and universal dysregulation of genes, through therapy, that are targeted by a specific chromatin remodeling machinery. This finding was validated in an independent cohort of 22 further GBM pairs. To understand the therapeutic potential of this finding we must determine whether genes are dysregulated through therapy owing to a) their fixed expression in inherently treatment resistance cells in the primary tumour which get selected during therapy to increase the signal of that profile, or b) changes in expression during the process of cells acquiring treatment resistance. To inspect this, we analysed single cell gene expression data from GBM spheroids pre- and post-treatment. We found that there was significant dysregulation of the genes associated with the chromatin remodeling complex but only at the three-week post-treatment time-point. CONCLUSION Our results indicate that GBM cells are being transcriptionally reprogrammed in response to treatment; the mechanism of which may represent a therapeutic opportunity.


2020 ◽  
Author(s):  
Menglan Cai ◽  
Canh Hao Nguyen ◽  
Hiroshi Mamitsuka ◽  
Limin Li

AbstractGene set enrichment analysis (GSEA) has been widely used to identify gene sets with statistically significant difference between cases and controls against a large gene set. GSEA needs both phenotype labels and expression of genes. However, gene expression are assessed more often for model organisms than minor species. More importantly, gene expression could not be measured under specific conditions for human, due to high healthy risk of direct experiments, such as non-approved treatment or gene knockout, and then often substituted by mouse. Thus predicting enrichment significance (on a phenotype) of a given gene set of a species (target, say human), by using gene expression measured under the same phenotype of the other species (source, say mouse) is a vital and challenging problem, which we call CROSS-species Gene Set Enrichment Problem (XGSEP). For XGSEP, we propose XGSEA (Cross-species Gene Set Enrichment Analysis), with three steps of: 1) running GSEA for a source species to obtain enrichment scores and p-values of source gene sets; 2) representing the relation between source and target gene sets by domain adaptation; and 3) using regression to predict p-values of target gene sets, based on the representation in 2). We extensively validated XGSEA by using four real data sets under various settings, proving that XGSEA significantly outperformed three baseline methods. A case study of identifying important human pathways for T cell dysfunction and reprogramming from mouse ATAC-Seq data further confirmed the reliability of XGSEA. Source code is available through https://github.com/LiminLi-xjtu/XGSEAAuthor summaryGene set enrichment analysis (GSEA) is a powerful tool in the gene sets differential analysis given a ranked gene list. GSEA requires complete data, gene expression with phenotype labels. However, gene expression could not be measured under specific conditions for human, due to high risk of direct experiments, such as non-approved treatment or gene knockout, and then often substituted by mouse. Thus no availability of gene expression leads to more challenging problem, CROSS-species Gene Set Enrichment Problem (XGSEP), in which enrichment significance (on a phenotype) of a given gene set of a species (target, say human) is predicted by using gene expression measured under the same phenotype of the other species (source, say mouse). In this work, we propose XGSEA (Cross-species Gene Set Enrichment Analysis) for XGSEP, with three steps of: 1) GSEA; 2) domain adaptation; and 3) regression. The results of four real data sets and a case study indicate that XGSEA significantly outperformed three baseline methods and confirmed the reliability of XGSEA.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247669
Author(s):  
Kyung Soo Kim ◽  
Dong Wook Jekarl ◽  
Jaeeun Yoo ◽  
Seungok Lee ◽  
Myungshin Kim ◽  
...  

To study the dysregulated host immune response to infection in sepsis, gene expression profiles from the Gene Expression Omnibus (GEO) datasets GSE54514, GSE57065, GSE64456, GSE95233, GSE66099 and GSE72829 were selected. From the Kyoto Encyclopedia of Genes and Genomes (KEGG) immune system pathways, 998 unique genes were selected, and genes were classified as follows based on gene annotation from KEGG, Gene Ontology, and Reactome: adaptive immunity, antigen presentation, cytokines and chemokines, complement, hematopoiesis, innate immunity, leukocyte migration, NK cell activity, platelet activity, and signaling. After correlation matrix formation, correlation coefficient of 0.8 was selected for network generation and network analysis. Total transcriptome was analyzed for differentially expressed genes (DEG), followed by gene set enrichment analysis. The network topological structure revealed that adaptive immunity tended to form a prominent and isolated cluster in sepsis. Common genes within the cluster from the 6 datasets included CD247, CD8A, ITK, LAT, and LCK. The clustering coefficient and modularity parameters were increased in 5/6 and 4/6 datasets in the sepsis group that seemed to be associated with functional aspect of the network. GSE95233 revealed that the nonsurvivor group showed a prominent and isolated adaptive immunity cluster, whereas the survivor group had isolated complement-coagulation and platelet-related clusters. T cell receptor signaling (TCR) pathway and antigen processing and presentation pathway were down-regulated in 5/6 and 4/6 datasets, respectively. Complement and coagulation, Fc gamma, epsilon related signaling pathways were up-regulated in 5/6 datasets. Altogether, network and gene set enrichment analysis showed that adaptive-immunity-related genes along with TCR pathway were down-regulated and isolated from immune the network that seemed to be associated with unfavorable prognosis. Prominence of platelet and complement-coagulation-related genes in the immune network was associated with survival in sepsis. Complement-coagulation pathway was up-regulated in the sepsis group that was associated with favorable prognosis. Network and gene set enrichment analysis supported elucidation of sepsis pathogenesis.


2016 ◽  
Author(s):  
Gennady Korotkevich ◽  
Vladimir Sukhov ◽  
Alexey Sergushichev

AbstractPreranked gene set enrichment analysis (GSEA) is a widely used method for interpretation of gene expression data in terms of biological processes. Here we present FGSEA method that is able to estimate arbitrarily low GSEA P-values with a higher accuracy and much faster compared to other implementations. We also present a polynomial algorithm to calculate GSEA P-values exactly, which we use to practically confirm the accuracy of the method.


2015 ◽  
Vol 6 ◽  
pp. 2438-2448 ◽  
Author(s):  
Andrew Williams ◽  
Sabina Halappanavar

Background: The presence of diverse types of nanomaterials (NMs) in commerce is growing at an exponential pace. As a result, human exposure to these materials in the environment is inevitable, necessitating the need for rapid and reliable toxicity testing methods to accurately assess the potential hazards associated with NMs. In this study, we applied biclustering and gene set enrichment analysis methods to derive essential features of altered lung transcriptome following exposure to NMs that are associated with lung-specific diseases. Several datasets from public microarray repositories describing pulmonary diseases in mouse models following exposure to a variety of substances were examined and functionally related biclusters of genes showing similar expression profiles were identified. The identified biclusters were then used to conduct a gene set enrichment analysis on pulmonary gene expression profiles derived from mice exposed to nano-titanium dioxide (nano-TiO2), carbon black (CB) or carbon nanotubes (CNTs) to determine the disease significance of these data-driven gene sets. Results: Biclusters representing inflammation (chemokine activity), DNA binding, cell cycle, apoptosis, reactive oxygen species (ROS) and fibrosis processes were identified. All of the NM studies were significant with respect to the bicluster related to chemokine activity (DAVID; FDR p-value = 0.032). The bicluster related to pulmonary fibrosis was enriched in studies where toxicity induced by CNT and CB studies was investigated, suggesting the potential for these materials to induce lung fibrosis. The pro-fibrogenic potential of CNTs is well established. Although CB has not been shown to induce fibrosis, it induces stronger inflammatory, oxidative stress and DNA damage responses than nano-TiO2 particles. Conclusion: The results of the analysis correctly identified all NMs to be inflammogenic and only CB and CNTs as potentially fibrogenic. In addition to identifying several previously defined, functionally relevant gene sets, the present study also identified two novel genes sets: a gene set associated with pulmonary fibrosis and a gene set associated with ROS, underlining the advantage of using a data-driven approach to identify novel, functionally related gene sets. The results can be used in future gene set enrichment analysis studies involving NMs or as features for clustering and classifying NMs of diverse properties.


Author(s):  
James H Joly ◽  
William E Lowry ◽  
Nicholas A Graham

Abstract Motivation Gene Set Enrichment Analysis (GSEA) is an algorithm widely used to identify statistically enriched gene sets in transcriptomic data. However, GSEA cannot examine the enrichment of two gene sets or pathways relative to one another. Here we present Differential Gene Set Enrichment Analysis (DGSEA), an adaptation of GSEA that quantifies the relative enrichment of two gene sets. Results After validating the method using synthetic data, we demonstrate that DGSEA accurately captures the hypoxia-induced coordinated upregulation of glycolysis and downregulation of oxidative phosphorylation. We also show that DGSEA is more predictive than GSEA of the metabolic state of cancer cell lines, including lactate secretion and intracellular concentrations of lactate and AMP. Finally, we demonstrate the application of DGSEA to generate hypotheses about differential metabolic pathway activity in cellular senescence. Together, these data demonstrate that DGSEA is a novel tool to examine the relative enrichment of gene sets in transcriptomic data. Availability and implementation DGSEA software and tutorials are available at https://jamesjoly.github.io/DGSEA/. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document