scholarly journals Experimental studies on the ultra-precision finishing of cylindrical surfaces using magnetorheological finishing process

2014 ◽  
Vol 2 (1) ◽  
pp. 550-557 ◽  
Author(s):  
R. Gheisari ◽  
A.A. Ghasemi ◽  
M. Jafarkarimi ◽  
S. Mohtaram
2018 ◽  
Vol 5 (5) ◽  
pp. 12426-12436 ◽  
Author(s):  
K. Naveen ◽  
Vignesh V. Shanbhag ◽  
N. Balashanmugam ◽  
Prakash Vinod

Author(s):  
Dilshad Ahmad Khan ◽  
Zafar Alam ◽  
Sunil Jha

The ball end magnetorheological finishing (BEMRF) is an advanced nanofinishing process for flat, curved and freeform surfaces of ferromagnetic as well as diamagnetic materials. While finishing copper (diamagnetic material) by this process, a low finishing effect is obtained as its surface repels the externally applied magnetic field. In this work a magnetic simulation is carried out over both copper and ferromagnetic material. For the ferromagnetic material the simulation result shows a high flux density region below the tool tip. However in case of copper the magnetic flux density is too low for finishing. It is also observed through simulations that when copper workpiece is placed on a mild steel base the flux density improves marginally. This led to the idea of using a permanent magnet (in place of mild steel) as a base for finishing of copper using the BEMRF process. Using this technique copper was finished and the experimental results indicate that this method can realize ultra-precision finishing of copper.


Author(s):  
Partap Singh Samra ◽  
Sehijpal Singh ◽  
Lakhvir Singh

Wide application of hard and brittle advanced ceramics, glasses and semiconductors in Mechanical, Optical and Electronic industry has led to the development of new ultra-precision finishing processes. With an increase in the applications of these materials, the need of finishing these materials has also become a great challenge. Dimensional and finish accuracies are the parameters that needs to be focused and improved with minimum time and cost. Another crucial parameter is the subsurface damages that are quiet common with these materials during finishing process.  New processes have been developed to overcome the drawbacks of the existing processes for Nano finishing. These processes can be classified as Conventional, Precision and Ultra-precision finishing based on the degree of dimensional accuracy and final surface finish. Both loose and bonded abrasives have been used for these processes. This paper deals with the study of some of the significant advances in ultra-precision finishing processes of hard and brittle materials.


2015 ◽  
Vol 15 (3) ◽  
pp. 249-256
Author(s):  
Laxmi Narayan Pattanaik ◽  
Himanshu Agarwal

AbstractOne of the newly developed methods for obtaining super-finished shiny surfaces for non-magnetic freeform jobs is magnetorheological finishing (MRF). MRF is an advanced finishing process in which the grinding force is controlled by magnetic field. The material removal in MRF is governed by the magnetorheological (MR) fluid which mainly consists of carbonyl iron (CI), abrasive particles, carrier fluids and additives. It is a precision-finishing process that can finish complicated geometries or difficult-to-approach regions. MRF process is capable of giving nanometre-scale surface finish. The process makes use of an MR fluid as a tool that acts as a flexible magnetic abrasive brush that provides finishing action. The relative motion between the finishing medium and the work can be obtained either by rotating the work, rotating the finishing medium or both. In the present paper, a set-up has been developed for MRF application using a pillar-drilling machine. Experiments were conducted to finish freeform jobs of copper alloy using the developed process. The effects of various process parameters, viz composition of the MR fluid, rotational speed of work and vessel containing MR fluid, mesh size of abrasives on surface finish, were explored.


Author(s):  
Mayank Srivastava ◽  
Pulak M Pandey

In the present work, a novel hybrid finishing process that combines the two preferred methods in industries, namely, chemical-mechanical polishing (CMP) and magneto-rheological finishing (MRF), has been used to polish monocrystalline silicon wafers. The experiments were carried out on an indigenously developed double-disc chemical assisted magnetorheological finishing (DDCAMRF) experimental setup. The central composite design (CCD) was used to plan the experiments in order to estimate the effect of various process factors, namely polishing speed, slurry flow rate, percentage CIP concentration, and working gap on the surface roughness ([Formula: see text]) by DDCAMRF process. The analysis of variance was carried out to determine and analyze the contribution of significant factors affecting the surface roughness of polished silicon wafer. The statistical investigation revealed that percentage CIP concentration with a contribution of 30.6% has the maximum influence on the process performance followed by working gap (21.4%), slurry flow rate (14.4%), and polishing speed (1.65%). The surface roughness of polished silicon wafers was measured by the 3 D optical profilometer. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were carried out to understand the surface morphology of polished silicon wafer. It was found that the surface roughness of silicon wafer improved with the increase in polishing speed and slurry flow rate, whereas it was deteriorated with the increase in percentage CIP concentration and working gap.


Author(s):  
Farhad Imani ◽  
Bing Yao ◽  
Ruimin Chen ◽  
Prahalada Rao ◽  
Hui Yang

Nowadays manufacturing industry faces increasing demands to customize products according to personal needs. This trend leads to a proliferation of complex product designs. To cope with this complexity, manufacturing systems are equipped with advanced sensing capabilities. However, traditional statistical process control methods are not concerned with the stream of in-process imaging data. Also, very little has been done to investigate nonlinearity, irregularity, and inhomogeneity in image stream collected from manufacturing processes. This paper presents the multifractal spectrum and lacunarity measures to characterize irregular and inhomogeneous patterns of image profiles, as well as detect the hidden dynamics of the underlying manufacturing process. Experimental studies show that the proposed method not only effectively characterizes the surface finishes for quality control of ultra-precision machining but also provides an effective model to link process parameters with fractal characteristics of in-process images acquired from additive manufacturing. This, in turn, will allow a swift response to processes changes and consequently reduce the number of defective products. The proposed fractal method has strong potentials to be applied for process monitoring and control in a variety of domains such as ultra-precision machining, additive manufacturing, and biomanufacturing.


Author(s):  
Anand Sharma ◽  
M.S. Niranjan

Magnetorheological Finishing (MRF) is one of the precision finishing processes and recently commercialized method for finishing of various materials like optical glasses, metals, non-metals etc. This method utilizes a suspension consisting of a fluid carrier which can be water or oil, both magnetic and non-magnetic particles and stabilizing agents. Rheological behavior of this mixture of magnetorheological (MR) fluid with abrasives changes under the influence of magnetic field which in turn regulates the finishing forces during finishing processes. Present study critically reviews the MRF process used for achieving nano-level finishing of soft materials and the advancements made in this process


Sign in / Sign up

Export Citation Format

Share Document