scholarly journals Influence of heat input on weld bead geometry using duplex stainless steel wire electrode on low alloy steel specimens

2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Ajit Mondal ◽  
Manas Kumar Saha ◽  
Ritesh Hazra ◽  
Santanu Das
Author(s):  
Patricio Gustavo Riofrío ◽  
Carlos Alexandre Capela ◽  
José AM Ferreira ◽  
Amilcar Ramalho

High strength low alloy steels subjected to the thermomechanical control process present excellent strength–toughness combination, high strength/weight ratio, and weldability. Therefore, they are widely used in structural components, such as pressure vessels, oil/gas transportation pipes, lifting equipment, vehicles, shipbuilding and offshore industries, and in the automotive industry where low thickness (0.8–3 mm thickness) is of great importance. Usually, these steels are welded by conventional gas metal arc welding, which creates wide heat-affected zones, large residual stresses, and distortion in the welded parts. Laser welding is nowadays an alternative process to weld high strength low alloy steel parts due to its advantages. The aim of this work is to understand the effect of process parameters on defects, weld bead geometry, microstructure, and mechanical properties, namely hardness and tensile strength. We identify the main laser welding parameters and their influence on the weld bead geometry and defects, for a 3 mm thick high strength low alloy steel welded under a maximum power of 2 kW. A cross section of the weld seam was optimized achieving a good geometry without porosity. The threshold value of the heat input to achieve complete penetration was determined for different focus diameters. The microstructure, size, and hardness of the heat-affected zone and of the fusion zone are strongly influenced by the heat input. The values of the tensile strength achieved in butt welds were close to the base metal by an appropriate selection of the laser welding parameters and the heat input.


CORROSION ◽  
10.5006/3697 ◽  
2021 ◽  
Author(s):  
Nicolas Larche ◽  
Perry Nice ◽  
Hisashi Amaya ◽  
Lucrezia Scoppio ◽  
Charles Leballeur ◽  
...  

In seawater injection wells, the available well tubing materials are generally Low alloy steel, Glass Reinforced Epoxy lined low alloy steel or Corrosion Resistant Alloy’s (CRA) such as super duplex stainless steel. However, in treated seawater the corrosion risk can be controlled and lower grade alloys (low alloy steel) can be considered. But for long well lifetime designs (20 years plus), then low alloy steel tubing can be challenged. In this respect recent efforts have focused attention on better dissolved oxygen control which permits the investigation and on the possible use of more cost-effective materials such as the duplex stainless steels UNS S82551, and UNS S82541 (the latter is a higher strength version, but same PRENw). Full scale testing of tubes joined together with a proprietary premium threaded connection (PCPC couplings) was performed in controlled seawater loops simulating service conditions at 30°C. The flow rate and dissolved oxygen were controlled at 5 m/s and <20ppb, respectively. Weekly dissolved oxygen excursions corresponding to 24h at 100ppb followed by 1 hour at 300ppb were performed during the 5 months exposure. Corrosion results of UNS S82551/S82541 tubing were compared to UNS S31803 and UNS S39274. In parallel, laboratory exposures of creviced coupons for parametric study were performed in dissolved oxygen-controlled cells, allowing the measurement of electrochemical potentials as function of dissolved oxygen content and the related corrosion resistance. The results showed that dissolved oxygen content should be properly controlled below critical values to avoid crevice corrosion of the lesser alloyed duplex stainless steels. The ability of UNS S82541 to recover or re-passivate after prolonged exposures to high dissolved oxygen concentrations (DOC) was also determined with both the use of full sized pipe-coupling premium connection (PCPC) test cells, and electrochemical testing involving a Remote Crevice Assembly (RCA). The re-passivation potential was investigated after different active crevice corrosion durations. The results of the study allowed to precisely define the limits of use of UNS S82541 in treated seawater, i. e. the critical DOC conditions for corrosion initiation and for re-passivation of UNS S82541. For all tested conditions, the UNS S82551/S82541 showed a rather good ability to re-passivation when normal service conditions (i. e. low dissolved oxygen) are recovered.


2018 ◽  
Vol 18 ◽  
pp. 7-13
Author(s):  
Brahim Belkessa ◽  
Djamel Miroud ◽  
Billel Cheniti ◽  
Naima Ouali ◽  
Maamar Hakem ◽  
...  

This work purposes to investigate the microstructure and the mechanical behavior of dissimilar metals weld between 2205 duplex stainless steel (UNS 31803) and high strength low alloy steel API X52. The joining was produced by shielded metal arc welding process using two different filler metals, the duplex E2209 and austenitic E309 grade.The microstructures of the dissimilar welded joints have been investigated by optical microscopy, scanning electron microscopy and energy-dispersive spectroscopy (EDS). The EDS analysis performed at the API X52/weld metal interface showed an evident gradient of Cr and Ni between fusion and type II boundaries, where the highest hardness value was recorded.


2021 ◽  
Vol 2 (3) ◽  
pp. 397-411
Author(s):  
Cem Örnek ◽  
Kemal Davut ◽  
Mustafa Kocabaş ◽  
Aleyna Bayatlı ◽  
Mustafa Ürgen

The corrosion morphology in grade 2205 duplex stainless steel wire was studied to understand the nature of pitting and the causes of the ferrite phase’s selective corrosion in acidic (pH 3) NaCl solutions at 60 °C. It is shown that the corrosion mechanism is always pitting, which either manifests lacy cover perforation or densely arrayed selective cavities developing selectively on the ferrite phase. Pits with a lacy metal cover form in concentrated chloride solutions, whereas the ferrite phase’s selective corrosion develops in diluted electrolytes, showing dependency on the chloride-ion concentration. The pit perforation is probabilistic and occurs on both austenite and ferrite grains. The lacy metal covers collapse in concentrated solutions but remain intact in diluted electrolytes. The collapse of the lacy metal cover happens due to hydrogen embrittlement. Pit evolution is deterministic and occurs selectively in the ferrite phase in light chloride solutions.


2015 ◽  
Vol 264 ◽  
pp. 150-162 ◽  
Author(s):  
Abbas Eghlimi ◽  
Morteza Shamanian ◽  
Masoomeh Eskandarian ◽  
Azam Zabolian ◽  
Majid Nezakat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document