scholarly journals On the modelling of infilled RC frames through strut models

2017 ◽  
Vol 4 (1) ◽  
pp. 1371578 ◽  
Author(s):  
Marco Tanganelli ◽  
Tommaso Rotunno ◽  
Stefania Viti ◽  
Paolo Zampieri
Keyword(s):  
1996 ◽  
Vol 122 (3) ◽  
pp. 228-237 ◽  
Author(s):  
Armin B. Mehrabi ◽  
P. Benson Shing ◽  
Michael P. Schuller ◽  
James L. Noland

2017 ◽  
Vol 16 (3) ◽  
pp. 1487-1510 ◽  
Author(s):  
Gholamreza Soltanzadeh ◽  
Hanim Bin Osman ◽  
Mohammadreza Vafaei ◽  
Yousef Karimi Vahed

2019 ◽  
Vol 26 (1) ◽  
pp. 30-42 ◽  
Author(s):  
Mehmet Emin Arslan ◽  
Ahmet Durmuş ◽  
Metin Hüsem

AbstractThis paper presents the experimental behavior of plane, non-strengthened and glass fiber reinforced polymer (GFRP) strengthened infilled reinforced concrete (RC) frames with low strength concrete (LSC) and normal strength concrete (NSC) under lateral reversed cyclic loading. For this purpose, eight full-scale, one-bay, one-storey plane and infilled (brick and aerated concrete blocks which are commonly used in RC construction) RC frames with LSC and NSC were produced and in-plane lateral loading tests were carried out. Test results indicate that infill walls considerably change the behavior of frames by increasing rigidity and load carrying capacity. By contrast, GFRP fabric used for strengthening of infilled RC frames improves ductility, load carrying and energy dissipation capacity of infilled frames with LSC and NSC as well. After all the test results were evaluated together, a GFRP strengthened brick infilled frame demonstrated the best performance under cyclic lateral loading.


2010 ◽  
Vol 24 (4) ◽  
pp. 596-609 ◽  
Author(s):  
E. Yuksel ◽  
H. Ozkaynak ◽  
O. Buyukozturk ◽  
C. Yalcin ◽  
A.A. Dindar ◽  
...  
Keyword(s):  

2019 ◽  
Vol 13 (1) ◽  
pp. 135-148 ◽  
Author(s):  
Christiana A. Filippou ◽  
Nicholas C. Kyriakides ◽  
Christis Z. Chrysostomou

Background: The behavior of masonry-infilled Reinforced Concrete (RC) frame structures during an earthquake, has attracted the attention of structural engineers since the 1950s. Experimental and numerical studies have been carried out to investigate the behavior of masonry-infilled RC frame under in-plane loading. Objective: This paper presents a numerical model of the behavior existing masonry-infilled RC frame that was studied experimentally at the University of Patra. The objective of the present study is to identify suitable numerical constitutive models for each component of the structural system in order to create a numerical tool to model the masonry infilled RC frames in-plane behavior by accounting the frame-infill separation. Methods: A 2D masonry-infilled RC frame was developed in DIANA Finite Element Analysis (FEA) software and an eigenvalue and nonlinear structural cyclic analyses were performed. It is a 2:3 scale three-story structure with non-seismic design and detailing, subjected to in-plane cyclic loading through displacement control analysis. Results: There is a good agreement between the numerical model and experimental results through a nonlinear cyclic analysis. It was found that the numerical model has the capability to predict the initial stiffness, the ultimate stiffness, the maximum shear-force capacity, cracking- patterns and the possible failure mode of masonry-infilled RC frame. Conclusion: Therefore, this model is a reliable model of the behavior of masonry-infilled RC frame under cyclic loading including the frame-infill separation (gap opening).


2019 ◽  
Vol 23 (5) ◽  
pp. 2175-2187
Author(s):  
Elshan Ahani ◽  
Mir Naghi Mousavi ◽  
Ali Ahani ◽  
Mohammad Kheirollahi

2018 ◽  
Vol 215 ◽  
pp. 01036
Author(s):  
Maidiawati ◽  
Jafril Tanjung ◽  
Hamdeni Medriosa ◽  
Yulia Hayati

Many researchers have performed a lot of studies of the seismic behavior reinforced concrete (RC) frame with masonry infill. They found that masonry infill affects the lateral strength, stiffness and ductility performance of the RC frame structures. However, when openings appeared in the panel infill for door and windows, the responses of the overall structure are entirely changed. The primary purpose of this study is to experimentally investigate the behavior of brick infilled RC frames possessing single opening and two openings. Four specimens of 1/4-scale single bay RC frames with brick infills were made that were one bare frame, one frame with full infill and two frames with infills having a central opening and two openings with the opening ratio of 25%. The specimens were tested under lateral reversed cyclic loads. Consequently, different responses of failure mechanism, lateral strength, stiffness and energy dissipated were observed among the specimens. The brick full infill failed in shear with propagation cracks in central part of the panel, but in the case of the infills with single and two openings, the cracks were dominated at the corners of the openings. The in-plane strength, stiffness and dissipated energy of infilled frames decreased when openings appeared in the panel. However, the seismic performance of brick infilled frame with the opening of 25% of panel area is better than those of bare frame. The brick infilled frames with a central opening and two openings are similar in lateral strength and dissipated energy. It seems that area and position of the openings control the seismic response to the overall infilled frame structure of the openings


Sign in / Sign up

Export Citation Format

Share Document