scholarly journals Numerical analysis on the effect of the vortex finder diameter and the length of vortex limiter on the flow field and particle collection in a new cyclone separator

2018 ◽  
Vol 5 (1) ◽  
pp. 1562319 ◽  
Author(s):  
Eflita Yohana ◽  
Mohammad Tauviqirrahman ◽  
Arbian Ridzka Putra ◽  
Ade Eva Diana ◽  
Kwang-Hwan Choi ◽  
...  
Author(s):  
Bin Xiong ◽  
Xiaofeng Lu ◽  
R. S. Amano

This paper presents a numerical study of gas flow in a square cyclone separator with a double inlet. The turbulence of gas flow is computed by the use of the Reynolds stress model. The distribution of the flow field and pressure drop under different constructional details, which include changes of the shape, size and arrangement of the vortex finder are obtained. The computed results in the distributions of pressure in different sections are verified by comparison with those measured. We found that the center of the flow field is nearly on the geometric center of the cyclone. The flow fields show a feature of Rankine eddy, i.e., a strongly swirling region in the central part and a pseudo-free eddy region of weak swirling intensity near the cyclone wall. Local vortex exists at the corners where the flow changes their direction sharply, but it is less chaotic than in the general square cyclone with a single inlet. The flow field away from the outlet of the vortex finder is different from the Rankine eddy. The pressure-drop increases rapidly with the increase of the inlet velocity, and the pressure-drop increases with the decrease of the diameter of vortex finder and the increase of length of the vortex finder. The calculat ed results of this paper provide some guidance for the optimization of the square cyclone separator structure.


2021 ◽  
Vol 172 ◽  
pp. 107172
Author(s):  
Feng Li ◽  
Peikun Liu ◽  
Xinghua Yang ◽  
Yuekan Zhang ◽  
Xiaoyu Li ◽  
...  

Separations ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 79
Author(s):  
Yuekan Zhang ◽  
Jiangbo Ge ◽  
Lanyue Jiang ◽  
Hui Wang ◽  
Junru Yang ◽  
...  

In view of the difficulty of traditional hydrocyclones to meet the requirements of fine classification, a double-overflow three-product (internal overflow, external overflow and underflow) hydrocyclone was designed in this study. Numerical simulation and experimental research methods were used to investigate the effects of double-overflow flow field characteristics and structural parameters (i.e., internal vortex finder diameter and insertion depth) on separation performance. The research results showed that the larger the diameter of the internal vortex finder, the greater the overflow yield and the larger the cut size. The finest internal overflow product can be obtained when the internal vortex finder is 30 mm longer than the external vortex finder. The separation efficiency is highest when the internal vortex finder is 30 mm shorter than the external vortex finder.


Author(s):  
Angela O. Nieckele ◽  
Luis Fernando Figueira da Silva ◽  
Joa˜o Carlos R. Pla´cido

Thermal spallation is a possible drilling technique which consists of using hot supersonic jets as heat source to perforate hard rocks at high rates. This work presents a numerical analysis of a typical spallation drilling configuration, by the finite volume method. The time-averaged conservation equations of mass, momentum and energy are solved to determine the turbulent compressible gas phase flow field. Turbulence is predicted by the classical high Reynolds number κ-ε model, as well as with a low Reynolds number κ-ε model. The influence of the jet Reynolds number is investigated. Special attention is given to the rock surface temperature, since its accurate determination is required to predict spallation rates under field-drilling conditions.


Author(s):  
Cosimo Bianchini ◽  
Antonio Andreini ◽  
Bruno Facchini ◽  
Ignazio Vitale ◽  
Fabio Turrini

2014 ◽  
Vol 63 ◽  
pp. 125-138 ◽  
Author(s):  
M. Ghodrat ◽  
S.B. Kuang ◽  
A.B. Yu ◽  
Andrew Vince ◽  
G.D. Barnett ◽  
...  

2010 ◽  
Vol 156-157 ◽  
pp. 948-955
Author(s):  
Guang Yao Meng ◽  
Ji Wen Tan ◽  
Yi Cui

Relative motion between grinding wheel and workpiece makes the lubricant film pressure formed by grinding fluid in the grinding area increase, consequently, dynamic pressure lubrication forms. The grinding fluid flow field mathematical model in smooth grinding area is established based on lubrication theory. The dynamic pressure of grinding fluid field, flow velocity and carrying capacity of lubricating film are calculated by the numerical analysis method. An analysis of effect of grinding fluid hydrodynamic on the total lifting force is performed, and the results are obtained.


Sign in / Sign up

Export Citation Format

Share Document