On the improvement of indoor environmental quality, energy performance and costs for a commercial nearly zero-energy building

Author(s):  
Giovanna De Luca ◽  
Ilaria Ballarini ◽  
Argun Paragamyan ◽  
Anna Pellegrino ◽  
Vincenzo Corrado
2020 ◽  
Vol 183 ◽  
pp. 107155 ◽  
Author(s):  
Ludovico Danza ◽  
Benedetta Barozzi ◽  
Alice Bellazzi ◽  
Lorenzo Belussi ◽  
Anna Devitofrancesco ◽  
...  

2021 ◽  
Vol 16 (4) ◽  
pp. 249-261
Author(s):  
Jeehwan Lee ◽  
Myoungju Lee

ABSTRACT Ongoing global architectural agendas span climate change, energy, a carbon-neutral society, human comfort, COVID-19, social justice, and sustainability. An architecture studio allows architecture students to learn how to solve complicated environmental issues through integrated thinking and a design process. The U.S. Department of Energy’s Solar Decathlon Design Challenge enables them to broaden their analytic perspectives on numerous subjects and strengthen their integrated thinking of environmental impacts, resilience, sustainability, and well-being. However, the unprecedented impact of the global COVID-19 pandemic transformed the physical studio-based design education system into an online-based learning environment. Mandatory social distancing by the global COVID-19 pandemic restricted interactive discussions and face-to-face collaborations for the integrated zero-energy building design process, which requires features of architecture, engineering, market analysis, durability and resilience, embodied environmental quality, integrated performance, occupant experience, comfort and environmental quality, energy performance, and presentation. This study emphasizes the educational effectiveness of virtual design studios as a part of the discourse on architectural pedagogy of zero-energy building (ZEB) design through integrated designs, technological theories, and analytic skills. The survey results of ten contests show educational achievement with over 90% of the highest positive tendency in the categories of embodied environmental quality and comfort and environmental quality, whereas the positive tendency of educational achievement in the categories of integrated performance, energy performance, and presentation were lower than 70%. The reason for the low percentage of simulation utilization and integrated performance was the lack of a proper understanding of and experience with ZEB simulations and evaluations for undergraduate students. Although VDS is not an ideal pedagogical system for the iterative design critique process, it can support the learning of the value of architectural education, including integrative design thinking, problem-solving skills, numerical simulation techniques, and communicable identities through online discussions and feedback during the COVID-19 pandemic.


Buildings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 214 ◽  
Author(s):  
Piasecki

The article presents a practical implementation of the indoor quality model. The indoor environmental quality (IEQ) model, including its essential elements (TCindex—thermal comfort, IAQindex—indoor air quality, ACcindex—acoustic comfort and Lindex—daylight quality), is used to evaluate a case-study single-family building built with the nearly zero energy (NZEB) standard. The results of comfort sub-indices based on the measured indoor parameters are aggregated into one IEQindex value representing the predicted building occupants’ satisfaction in percentage terms. The author’s intention is to use the proposed model in broader civil and environmental engineering practice, especially in terms of supporting the energy performance certification. The results obtained using the IEQ model were also compared with the results obtained with a similar method based on the comprehensive assessment system for built environment efficiency (CASBEE) approach for the same building.


2021 ◽  
Vol 13 (9) ◽  
pp. 5201
Author(s):  
Kittisak Lohwanitchai ◽  
Daranee Jareemit

The concept of a zero energy building is a significant sustainable strategy to reduce greenhouse gas emissions. The challenges of zero energy building (ZEB) achievement in Thailand are that the design approach to reach ZEB in office buildings is unclear and inconsistent. In addition, its implementation requires a relatively high investment cost. This study proposes a guideline for cost-optimal design to achieve the ZEB for three representative six-story office buildings in hot and humid Thailand. The energy simulations of envelope designs incorporating high-efficiency systems are carried out using eQuest and daylighting simulation using DIALux evo. The final energy consumptions meet the national ZEB target but are higher than the rooftop PV generation. To reduce such an energy gap, the ratios of building height to width are proposed. The cost-benefit of investment in ZEB projects provides IRRs ranging from 10.73 to 13.85%, with payback periods of 7.2 to 8.5 years. The energy savings from the proposed designs account for 79.2 to 81.6% of the on-site energy use. The investment of high-performance glazed-windows in the small office buildings is unprofitable (NPVs = −14.77–−46.01). These research results could help architects and engineers identify the influential parameters and significant considerations for the ZEB design. Strategies and technical support to improve energy performance in large and mid-rise buildings towards ZEB goals associated with the high investment cost need future investigations.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 895 ◽  
Author(s):  
Ilaria Ballarini ◽  
Giovanna De Luca ◽  
Argun Paragamyan ◽  
Anna Pellegrino ◽  
Vincenzo Corrado

Directive 2010/31/EU promotes the refurbishment of existing buildings to change them into nearly zero-energy buildings (nZEBs). Within this framework, it is of crucial importance to guarantee the best trade-off between energy performance and indoor environmental quality (IEQ). The implications of a global refurbishment scenario on thermal and visual comfort are assessed in this paper pertaining to an existing office building. The retrofit actions applied to achieve the nZEB target consist of a combination of envelope and technical building systems refurbishment measures, involving both HVAC and lighting. Energy and comfort calculations were carried out through dynamic simulation using Energy Plus and DIVA, for the thermal and visual performance assessments, respectively. The results point out that energy retrofit actions on the building envelope would lead to significant improvements in the thermal performance, regarding both energy savings (−37% of the annual primary energy for heating) and thermal comfort. However, a daylighting reduction would occur with a consequent higher electricity demand for lighting (36%). The research presents a detailed approach applicable to further analyses aimed at optimizing the energy efficiency measures in order to reduce the imbalance between visual and thermal comfort and to ensure the best performance in both domains.


Sign in / Sign up

Export Citation Format

Share Document