scholarly journals Practical Implementation of the Indoor Environmental Quality Model for the Assessment of Nearly Zero Energy Single-Family Building

Buildings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 214 ◽  
Author(s):  
Piasecki

The article presents a practical implementation of the indoor quality model. The indoor environmental quality (IEQ) model, including its essential elements (TCindex—thermal comfort, IAQindex—indoor air quality, ACcindex—acoustic comfort and Lindex—daylight quality), is used to evaluate a case-study single-family building built with the nearly zero energy (NZEB) standard. The results of comfort sub-indices based on the measured indoor parameters are aggregated into one IEQindex value representing the predicted building occupants’ satisfaction in percentage terms. The author’s intention is to use the proposed model in broader civil and environmental engineering practice, especially in terms of supporting the energy performance certification. The results obtained using the IEQ model were also compared with the results obtained with a similar method based on the comprehensive assessment system for built environment efficiency (CASBEE) approach for the same building.

2017 ◽  
Vol 41 (3) ◽  
pp. 264-289 ◽  
Author(s):  
Michał Piasecki ◽  
Krystyna Kostyrko ◽  
Sławomir Pykacz

Indoor environment quality is a relative measure of comfort perception by people exposed to the indoor conditions. It is expected that any assessment of energy performance should also include indoor comfort. This study is to review indoor environmental quality models (with respect to thermal and acoustic comfort, indoor air and lighting quality). A simplified indoor environmental quality model is also developed with consideration of EN 15251 draft ‘Guideline for using indoor environmental input parameters for the design and assessment of energy performance of buildings’. This article analyses what components should be modelled and in particular discusses the effect of different weighting schemes on the overall indoor environmental quality index. The analysis includes thermal comfort models, indoor air quality, acoustic comfort and daylight illumination versus lightning. The proposed indoor environmental quality component sub-models will give the most reliable results when the model indoor environment input data are correctly measured and disturbing influences of indoor environmental quality monitoring process are well defined and properly assessed. The final indoor environmental quality result is based on subjoining the uncertainty values achieved in panel analysis of percentage of persons dissatisfied with indoor environmental quality with corrected measurement uncertainty. All simulations for IEQindex sub-components and preliminary metrological analysis of the whole indoor environmental quality model were performed with the NIST program for Monte Carlo tests. The presented indoor environmental quality model proposal is developed to support engineers’ practice as the convenient tool for a practical assessment of building’s occupational satisfaction.


2021 ◽  
Vol 246 ◽  
pp. 05004
Author(s):  
Triinu Bergmann ◽  
Aime Ruus ◽  
Kristo Kalbe ◽  
Mihkel Kiviste ◽  
Jiri Tintera

The Energy Performance of Buildings Directive (EPBD) of the EU states that Each Member State shall establish a long-term renovation strategy to support the renovation of building stock into a highly energy efficient and decarbonised building stock by 2050. The motive for the study was the dissatisfaction of inhabitants of a single-family building about the heating costs and thermal discomfort. In this study both the emotional and resource efficiency aspects were considered. The structures and technical systems of the studied small dwelling are typical of representing single-family buildings of the Estonian building stock. The initial purpose was to improve the energy efficiency of a building while preserving the existing load bearing structures as much as possible. The research questions were: 1) what the situation before the renovation was, 2) what solutions can be used, 3) making decisions, whether to renovate or demolish. Calculations were carried out – the thermal transmittance of the envelope structures was calculated based on the construction information, and the linear thermal transmittance of geometrical thermal bridges was calculated by using the software Therm. Field tests performed - the thermography and the air leakage of the building was found by standard blower-door test. Specific air leakage rate qE50=11.1 m3/(hm2) was estimated. A renovation solution was offered considering the need for extra insulation and airtightness. The dwelling energy performance indicator was reduced from the existing 279 kWh/(m2y) to 136 kWh/(m2y). For significant energy efficiency improvement deep renovation measures must be used and the question was whether it is rational. Before making the final decision, several aspects have to be considered: 1) emotional – the demolition or renovation of somebody’s home, 2) environmental aspects and resource-efficiency – the possibilities of the reuse of materials.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 895 ◽  
Author(s):  
Ilaria Ballarini ◽  
Giovanna De Luca ◽  
Argun Paragamyan ◽  
Anna Pellegrino ◽  
Vincenzo Corrado

Directive 2010/31/EU promotes the refurbishment of existing buildings to change them into nearly zero-energy buildings (nZEBs). Within this framework, it is of crucial importance to guarantee the best trade-off between energy performance and indoor environmental quality (IEQ). The implications of a global refurbishment scenario on thermal and visual comfort are assessed in this paper pertaining to an existing office building. The retrofit actions applied to achieve the nZEB target consist of a combination of envelope and technical building systems refurbishment measures, involving both HVAC and lighting. Energy and comfort calculations were carried out through dynamic simulation using Energy Plus and DIVA, for the thermal and visual performance assessments, respectively. The results point out that energy retrofit actions on the building envelope would lead to significant improvements in the thermal performance, regarding both energy savings (−37% of the annual primary energy for heating) and thermal comfort. However, a daylighting reduction would occur with a consequent higher electricity demand for lighting (36%). The research presents a detailed approach applicable to further analyses aimed at optimizing the energy efficiency measures in order to reduce the imbalance between visual and thermal comfort and to ensure the best performance in both domains.


2018 ◽  
Vol 28 (4) ◽  
pp. 470-478 ◽  
Author(s):  
Kwok Wai Mui ◽  
Tsz Wun Tsang ◽  
Ling Tim Wong ◽  
Yuen Ping William Yu

This study investigates the indoor environmental quality (IEQ) responses from occupants living in very small residential units that are unique to Hong Kong. Through the changes in environmental parameters, including thermal, indoor air quality, visual and aural, the study demonstrates that the overall IEQ acceptance in these units is different from the one in general residential building environments. Results show that occupants of these units are more sensitive to warmth and operative temperature change as compared to occupants of general residential buildings. A small variation of thermal acceptance suggests that the small unit occupants have already developed certain degree of tolerance to hot conditions. The adaptation to the reality of a hot environment is also reflected in the overall IEQ acceptance. It is believed that very small space residents have developed tolerance and adaptation to an unchangeable reality, changing environmental conditions does not necessarily alter their acceptance of individual IEQ aspects and overall IEQ.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 976 ◽  
Author(s):  
Jinqiu Li ◽  
Qingqin Wang ◽  
Hao Zhou

Released green building evaluation standards for operation stage include a huge number of indicators, which are very comprehensive and systematic. However, the indicators of these standards are very complicated and a large amount of time and manpower are consumed for their evaluation. To evaluate the operational performance of green buildings more practically and efficiently, some studies collect the operational data for part of the indicators (mainly focusing on building energy performance, indoor environmental quality or occupant satisfaction), which are too rough to evaluate the performance of green building. This paper proposed a total of 27 key performance indicators (KPIs) for green building operations monitoring. The number of proposed indicators is much fewer than the evaluation standards, as well as suitable for long-term monitoring, which can dramatically reduce evaluation time and cost. On the other hand, the indicators involving Outdoor environmental quality, Indoor environmental quality, HVAC system, P&D system, Renewable energy system, Total resource consumption and User behavior, which are more comprehensive and systematic than the conventional monitoring studies for operational performance of green building. Firstly, an indicators library for operations monitoring of green building was established based on relevant standards and literature review in this field. Secondly, “SMART” principle and Delphi method were adopted to select the key performance indicators for green building operations monitoring. Different background experts regarding green building industry were chosen to screen the most relevant, accessible and measurable indicators. Subsequently, two projects in China were selected for case study of key performance indicators proposed in this paper for green building operations monitoring to validate the feasibility and advancement.


Sign in / Sign up

Export Citation Format

Share Document