Mechanical, Thermal, Void Fraction and Water Absorption of Silane Surface Modified Silk Fiber Reinforced Epoxy Composites

2020 ◽  
Vol 59 (18) ◽  
pp. 1987-2002
Author(s):  
Zuraidah Zainudin ◽  
Noor Izyan Syazana Mohd Yusoff ◽  
Mat Uzir Wahit ◽  
Siti Hajjar Che Man
2017 ◽  
Vol 51 (28) ◽  
pp. 3909-3922 ◽  
Author(s):  
Priyadarshi Tapas Ranjan Swain ◽  
Sandhyarani Biswas

The present paper discovers the effect of ceramic filler inclusion on physico-mechanical and water absorption behaviour of untreated and chemically treated (alkali and benzoyl chloride treated) bi-directional jute natural-fiber-reinforced epoxy composites. In practice, the major drawbacks of using natural fibers are their high degree of moisture absorption and poor dimensional stability. Currently, chemical treatments are able to induce fiber modifications that increase their resistance when utilized in composite products. Jute fibers were subjected to various chemical modifications to improve the interfacial bonding with the matrix. In this study, an analysis has been carried out to make pre-treated jute fiber (10, 20, 30 and 40 wt.%) and different filler content (5 and 10 wt.%) with epoxy-based composites. A comparative study of all the untreated jute/aluminium oxide based hybrid composites with chemically treated jute/aluminium oxide based hybrid composites was carried out. The investigational result reveals that chemically treated composites considerably improved the mechanical properties of the composite. The maximum water absorption resistance and strength properties were found with benzoyl chloride-treated fiber-reinforced composite. Lastly, the surface morphology of fractured surfaces after tensile and flexural testing is studied using scanning electron microscope.


2016 ◽  
Vol 47 (2) ◽  
pp. 211-232 ◽  
Author(s):  
G Rajeshkumar ◽  
V Hariharan ◽  
TP Sathishkumar ◽  
V Fiore ◽  
T Scalici

Phoenix sp. fiber-reinforced epoxy composites have been manufactured using compression molding technique. The effect of reinforcement volume content (0%, 10%, 20%, 30%, 40%, and 50%) and size (300 µm particles, 10 mm, 20 mm, and 30 mm fibers) on quasi-static and dynamic mechanical properties was investigated. Moreover, the water absorption properties of composites were analyzed at different environmental conditions (10℃, 30℃, and 60℃). For each reinforcement size, composites loaded with 40% in volume show highest tensile and flexural properties. Furthermore, composites with 300 µm particles present the best impact properties and the lowest water absorption, regardless of the environmental condition. The dynamic mechanical properties of the composites loaded with 40% in volume were analyzed by varying the reinforcement size and the load frequency (i.e., 0.5 Hz, 1 Hz, 2 Hz, 5 Hz, and 10 Hz). It was found that the glass transition temperature of short fiber-reinforced composites is higher than that of the composite loaded with particles.


2018 ◽  
Vol 48 (8) ◽  
pp. 1274-1290 ◽  
Author(s):  
K Velusamy ◽  
P Navaneethakrishnan ◽  
G Rajeshkumar ◽  
TP Sathishkumar

This work deals with the investigation of mechanical properties and water absorption behavior of Calotropis Gigantea fiber reinforced epoxy composites prepared by using compression molding technique. The experiments were carried out by varying fiber length (10, 20, and 30 mm) and volume fraction (0, 5, 10, 15, 20, 25, and 30%). In addition to this, the water absorption behavior was analyzed at different climatic temperatures of 10℃, 40℃, and 70℃. The composites reinforced with 25% in volume of Calotropis Gigantea fiber showed better tensile, flexural, and impact properties. The hardness value and water absorption rate are higher for composites reinforced with 30% in volume of 30-mm Calotropis Gigantea fibers. Moreover, by increasing the bath temperature, the water absorption rate associated to this class of composite increases.


Author(s):  
Ambareesh K V

Abstract: Easy availability of natural fibre, low cost and ease of manufacturing have urged the attention of researchers towards the possibility of reinforcement of natural fiber to improve their mechanical properties and study the extent to which they satisfy the required specifications of good reinforced polymer composite for industrial and structural applications. Polymer composites made of natural fiber is susceptible for moisture. Moisture absorption in such composites mainly because of hydrophilic nature of natural fibers. Water uptake of natural fiber reinforced composites has an effect on different. Lot of researchers prepared the natural fiber reinforced composites without conducting water absorption tests; hence it is the potential area to investigate the behavior of the composites with different moisture absorption. In this research the experimental sequence and the materials are used for the study of coir and Sisal short fiber reinforced epoxy matrix composites. The coir and Sisal short fibers are made into the short fibers with 10 mm x 10 mm x 5 mm size. The Epoxy Resin-LY556(Di glycidyl ether of bi phenol) and Hardner-HYD951 (Tetra mine), the water absorption behaviors are analyzed in the coir and Sisal short fibers reinforced epoxy composites. The water absorption behaviors of the epoxy composites reinforced with the coir and sisal short fibers with 25, 30 and 35wt% were analyzed at three different water environments, such as sea water, distilled water, and tap water for 12 days at room temperature. It was observed that the composites show the high level of the water absorption percentage at sea water immersion as compared to the other water environments. Due to the water absorption, the mechanical properties of macro particle/epoxy composites were decreased at all weight percentages. Keywords: Natural fibre, Moisture absorption, Coir and sisal short fibre, Reinforced polymer composites, Water absorption behaviour Polymer matrix composite (Epoxy resin) using Coir and sisal short fibre and to study its moisture absorption behaviour


Sign in / Sign up

Export Citation Format

Share Document