Real-Time Monitoring of Polycyclic Aromatic Hydrocarbons in Cigarette Smoke Using Time-Resolved Laser-Induced Fluorescence

2003 ◽  
Vol 23 (4) ◽  
pp. 429-439 ◽  
Author(s):  
Joon Myong Song ◽  
Ramesh Jagannathan ◽  
David L. Stokes ◽  
Tuan Vo-Dinh ◽  
Mohammad R. Hajaligol
Author(s):  
Lu Yang ◽  
Hao Zhang ◽  
Xuan Zhang ◽  
Wanli Xing ◽  
Yan Wang ◽  
...  

Particulate matter (PM) is a major factor contributing to air quality deterioration that enters the atmosphere as a consequence of various natural and anthropogenic activities. In PM, polycyclic aromatic hydrocarbons (PAHs) represent a class of organic chemicals with at least two aromatic rings that are mainly directly emitted via the incomplete combustion of various organic materials. Numerous toxicological and epidemiological studies have proven adverse links between exposure to particulate matter-bound (PM-bound) PAHs and human health due to their carcinogenicity and mutagenicity. Among human exposure routes, inhalation is the main pathway regarding PM-bound PAHs in the atmosphere. Moreover, the concentrations of PM-bound PAHs differ among people, microenvironments and areas. Hence, understanding the behaviour of PM-bound PAHs in the atmosphere is crucial. However, because current techniques hardly monitor PAHs in real-time, timely feedback on PAHs including the characteristics of their concentration and composition, is not obtained via real-time analysis methods. Therefore, in this review, we summarize personal exposure, and indoor and outdoor PM-bound PAH concentrations for different participants, spaces, and cities worldwide in recent years. The main aims are to clarify the characteristics of PM-bound PAHs under different exposure conditions, in addition to the health effects and assessment methods of PAHs.


2016 ◽  
Vol 5 (2) ◽  
pp. 15 ◽  
Author(s):  
Haruki Shimazu

<p>The present study examines the concentrations of polycyclic aromatic hydrocarbons (PAHs) in cigarettes and sidestream cigarette smoke. Nine PAHs were determined in sidestream cigarette smokes for five types of cigarettes. The volume of the experimental room is approximately 66 m<sup>3</sup>. The air samples in the room were collected before and after smoking. The total PAH concentrations were approximately 1.0 ng/m<sup>3</sup> before smoking, but the median concentration and the range of PAHs were 29.1 ng/m<sup>3</sup> and from 7.62 to 57.6 ng/m<sup>3</sup> after smoking. The relationship between suspended particulate matter (SPM) and total PAHs after smoking is significant and proportional. This may indicate that the SPM formation is associated with PAH formation during smoking. Furthermore, nine PAHs were determined in the cigarettes. Median PAH contents in the five brands of cigarettes ranged from 221 to 936 ng per cigarette before smoking and from 66.9 to 266 ng per cigarette after smoking. Mean PAH emissions from cigarettes while smoking ranged from 257 to 1490 ng per cigarette. The results show that PAHs in the cigarettes, and those generated during smoking, were emitted into the air.</p>


Author(s):  
Salma Bejaoui ◽  
Farid Salama ◽  
Ella Sciamma-O'Brien

Polycyclic aromatic hydrocarbons (PAHs) are considered as plausible carriers for the extended red emission (ERE), a photoluminescent process associated with a wide variety of interstellar environments, as well as for broad emission band features seen in cometary spectra. We report the absorption spectra of phenanthrene, anthracene, fluoranthene, pentacene, pyrene, chrysene and triphenylene isolated at 10 K in solid argon matrices together with laser induced fluorescence (LIF) spectra at 355 nm of matrix-isolated anthracene and fluoranthene. LIF spectra are compared with the UV/blue fluorescence spectra of the Red Rectangle Nebula (RR). The LIF spectra measured in solid Ar matrices have been shifted to the predicted position of the PAH band emission in the gas phase for comparison with the astronomical observations (Fig. 1).


Author(s):  
A Rodgman ◽  
LC Cook

AbstractBecause of the significant advancements in fractionation, analytical, and characterization technologies since the early 1960s, hundreds of components of complex mixtures have been accurately characterized without the necessity of actually isolating the individual component. This has been particularly true in the case of the complex mixtures tobacco and tobacco smoke. Herein, an historical account of a mid-1950 situation concerning polycyclic aromatic hydrocarbons (PAHs) in cigarette smoke is presented. While the number of PAHs identified in tobacco smoke has escalated from the initial PAH, azulene, identified in 1947 to almost 100 PAHs identified by late 1963 to more than 500 PAHs identified by the late 1970s, the number of PAHs isolated individually and characterized by several of the so-called classical chemical means (melting point, mixture melting point, derivative preparation and properties) in the mid-1950s and since is relatively few, 14 in all. They were among 44 PAHs identified in cigarette mainstream smoke and included the following PAHs ranging from bicyclic to pentacyclic: Acenaphthylene, 1,2-dihydroacenaphthylene, anthracene, benz[a]anthracene, benzo[a]pyrene, chrysene, dibenz[a, h]anthracene, fluoranthene, 9H-fluorene, naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, phenanthrene, and pyrene. One of them, benzo[a]pyrene, was similarly characterized in another study in 1959 by Hoffmann.


2014 ◽  
Vol 63 (1) ◽  
pp. 23-29
Author(s):  
Akira TORIBA ◽  
Chiharu HONMA ◽  
Waka UOZAKI ◽  
Thanyarat CHUESAARD ◽  
Ning TANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document