Combined Effect of Nitrogen–Phosphorus–Potassium Fertilizers and Water on Spring Wheat Yield in an Arid Desert Region

2004 ◽  
Vol 35 (1-2) ◽  
pp. 161-175 ◽  
Author(s):  
Zhenghu Duan ◽  
Honglang Xiao ◽  
Zhibao Dong ◽  
Xinrong Li ◽  
Gang Wang
2012 ◽  
Vol 20 (8) ◽  
pp. 1088-1095
Author(s):  
Guang LI ◽  
Yue LI ◽  
Gao-Bao HUANG ◽  
Zhu-Zhu LUO ◽  
Qi WANG ◽  
...  
Keyword(s):  

2008 ◽  
Vol 100 (2) ◽  
pp. 406 ◽  
Author(s):  
B. N. Otteson ◽  
M. Mergoum ◽  
J. K. Ransom ◽  
B. Schatz

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1240
Author(s):  
Peder K. Schmitz ◽  
Joel K. Ransom

Agronomic practices, such as planting date, seeding rate, and genotype, commonly influence hard red spring wheat (HRSW, Triticum aestivum L. emend. Thell.) production. Determining the agronomic optimum seeding rate (AOSR) of newly developed hybrids is needed as they respond to seeding rates differently from inbred cultivars. The objectives of this research were to determine the AOSR of new HRSW hybrids, how seeding rate alters their various yield components, and whether hybrids offer increased end-use quality, compared to conventional cultivars. The performance of two cultivars (inbreds) and five hybrids was evaluated in nine North Dakota environments at five seeding rates in 2019−2020. Responses to seeding rate for yield and protein yield differed among the genotypes. The AOSR ranged from 3.60 to 5.19 million seeds ha−1 and 2.22 to 3.89 million seeds ha−1 for yield and protein yield, respectively. The average AOSR for yield for the hybrids was similar to that of conventional cultivars. However, the maximum protein yield of the hybrids was achieved at 0.50 million seeds ha−1 less than that of the cultivars tested. The yield component that explained the greatest proportion of differences in yield as seeding rates varied was kernels spike−1 (r = 0.17 to 0.43). The end-use quality of the hybrids tested was not superior to that of the conventional cultivars, indicating that yield will likely be the determinant of the economic feasibility of any future released hybrids.


2021 ◽  
Author(s):  
Jun Ye ◽  
Zhen Gao ◽  
Xiaohua Wu ◽  
Zhanyuan Lu ◽  
Cundong Li ◽  
...  

2009 ◽  
Vol 149 (6-7) ◽  
pp. 1022-1031 ◽  
Author(s):  
Budong Qian ◽  
Reinder De Jong ◽  
Richard Warren ◽  
Aston Chipanshi ◽  
Harvey Hill

CATENA ◽  
2021 ◽  
Vol 207 ◽  
pp. 105617
Author(s):  
Jinlong Wang ◽  
Dexiong Teng ◽  
Xuemin He ◽  
Lu Qin ◽  
Xiaodong Yang ◽  
...  

Soil Research ◽  
2017 ◽  
Vol 55 (4) ◽  
pp. 341 ◽  
Author(s):  
Craig A. Scanlan ◽  
Ross F. Brennan ◽  
Mario F. D'Antuono ◽  
Gavin A. Sarre

Interactions between soil pH and phosphorus (P) for plant growth have been widely reported; however, most studies have been based on pasture species, and the agronomic importance of this interaction for acid-tolerant wheat in soils with near-sufficient levels of fertility is unclear. We conducted field experiments with wheat at two sites with acid soils where lime treatments that had been applied in the 6 years preceding the experiments caused significant changes to soil pH, extractable aluminium (Al), soil nutrients and exchangeable cations. Soil pH(CaCl2) at 0–10cm was 4.7 without lime and 6.2 with lime at Merredin, and 4.7 without lime and 6.5 with lime at Wongan Hills. A significant lime×P interaction (P<0.05) for grain yield was observed at both sites. At Merredin, this interaction was negative, i.e. the combined effect of soil pH and P was less than their additive effect; the difference between the dose–response curves without lime and with lime was greatest at 0kgPha–1 and the curves converged at 32kgPha–1. At Wongan Hills, the interaction was positive (combined effect greater than the additive effect), and lime application reduced grain yield. The lime×P interactions observed are agronomically important because different fertiliser P levels were required to maximise grain yield. A lime-induced reduction in Al phytotoxicity was the dominant mechanism for this interaction at Merredin. The negative grain yield response to lime at Wongan Hills was attributed to a combination of marginal soil potassium (K) supply and lime-induced reduction in soil K availability.


2019 ◽  
Vol 20 (5) ◽  
pp. 456-466
Author(s):  
V. I. Titova ◽  
L. D. Varlamova ◽  
R. N. Rybin ◽  
T. V. Andronova

The research has been carried out under production conditions on light gray forest soils with light particle-size composition at an area of 550 hectares where liquid pig manure (LPM) of a large pig breeding complex is annually used as an organic fertilizer at doses of 60 and 90 t/ha. The average characteristics of LPM are as follows: dry matter content is 9.5%, pH 7.7 units, nitrogen 0.22%, phosphorus 0.11%, and potassium 0.12%. The cultivated grain crops were presented by winter and spring wheat varieties, Moskovskaya 39 and Esther, respectively. It has been established that at the dose of 60 t/ha LPM for two years of research at an average a mean wheat yield was 3.0-3.75 t/ha, and at the dose of 90 t/ha - up to 4.75 t/ha. The return on investments for fertilizers in the “winter wheat → spring wheat” crop rotation link at the dose of 60 t/ha of LPM was 5.41 kg of grain per 1 kg of active substance of manure, at the dose of 90 t/ha - 4.57 kg / kg. A positive balance of nutritional elements developed on all fields, but it was better balanced when the dose of LPM was 60 t/ha and the yield was 3.0 t/ha of grain annually, or when the LPM dose was 90 t/ha and the yield of wheat was 4.75 t/ha. In this case, the estimated potassi-um supply of soil occurs at a lower rate than that of nitrogen and phosphorus. The application of 120 t of LPM during two years in total on loamy sand and of 180 t/ha on light loamy soil provided an increase in the content of mobile phosphorus compounds by 5-22 mg/kg, and potassium - by 11-30 mg/kg with a variation coefficient of 28-57% and 21-49%, respectively.


Sign in / Sign up

Export Citation Format

Share Document