Advanced Treatment of Biotreated Textile Industry Wastewater with Ozone, Virgin/Ozonated Granular Activated Carbon and Their Combination

2004 ◽  
Vol 39 (7) ◽  
pp. 1681-1694 ◽  
Author(s):  
Idil Arslan-Alaton ◽  
Ozden Seremet
Chemosphere ◽  
2019 ◽  
Vol 234 ◽  
pp. 845-854 ◽  
Author(s):  
Hooman Vatankhah ◽  
Stephanie M. Riley ◽  
Conner Murray ◽  
Oscar Quiñones ◽  
K. Xerxes Steirer ◽  
...  

2018 ◽  
Vol 18 (4) ◽  
pp. 600
Author(s):  
Eva Fathul Karamah ◽  
Ika Putri Adripratiwi ◽  
Linggar Anindita

Tofu industry wastewater is one of the environmental pollutants that need more effective treatment. Ozonation and adsorption method is known to have the capability to oxidize organic compound in wastewater. Adsorption is done by using granular activated carbon (GAC) as an adsorbent to increase tofu wastewater degradation process by adsorbing organic materials and increasing production of hydroxyl radical as the main oxidizing agent. This research is carried out to evaluate the performance of ozonation, adsorption, and combination of both in processing tofu wastewater. To evaluate the significance of ozone dosage and amount of GAC used, these variations are varied which are 60, 111, and 155 mg/h of ozone dosage and 50, 75, and 100 g of the amount of GAC used. Parameters of the process are organic substances of tofu wastewater such as COD, TSS, and pH. The measurements are being done using a spectrophotometer, colorimeter, and pH meter. The outcome of this research is to provide an alternative method in the liquid waste treatment of the tofu industry and the processed wastewater to meet the environmental quality standards. The more ozone and the more quantity of GAC used, the higher the quantity of hydroxyl radicals formed. Addition of GAC in the ozonation process results in more than 100% increase in hydroxyl radical production. Combination of ozonation and adsorption is able to remove 377.12 mg/L of COD and 26 mg/L of TSS.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3245
Author(s):  
Lam T. Phan ◽  
Heidemarie Schaar ◽  
Daniela Reif ◽  
Sascha Weilguni ◽  
Ernis Saracevic ◽  
...  

A set of CALUX in vitro bioassays was applied for long-term toxicity monitoring at an advanced wastewater treatment plant comprising ozonation and granular activated carbon filtration for the abatement of contaminants of emerging concern (CEC). During the 13-month monitoring, eight reporter gene assays targeting different modes of action along the cellular toxicity pathway were accessed to evaluate the suitability and robustness of the technologies. Two approaches were followed: on the one hand, signal reduction during advanced treatment was monitored; on the other hand, results were compared to currently available effect-based trigger values (EBTs). A decrease of the corresponding biological equivalent concentrations after the multibarrier system could be observed for all modes of action; while the estrogenic activity decreased below the EBT already during ozonation, the potencies of oxidative stress-like and toxic PAH-like compounds still exceeded the discussed EBT after advanced treatment. Overall, the long-term monitoring confirmed the positive effect of the multibarrier system, commonly evaluated only by CEC abatement based on chemical analysis. It could be demonstrated that advanced WWTPs designed for CEC abatement are suitable to significantly decrease toxicity responses not only in the frame of pilot studies but under real-world conditions as well.


2010 ◽  
Vol 10 (1) ◽  
pp. 87-95 ◽  
Author(s):  
B. R. Shivakoti ◽  
S. Fujii ◽  
M. Nozoe ◽  
S. Tanaka ◽  
C. Kunacheva

A series of perfluorinated chemicals (PFCs) surveys were conducted in two water purification plants (WPPs) having ozonation and granular activated carbon (GAC) filtration processes. In each plant, six different processes samples (source water, influent, coagulation-sedimentation effluent, ozonation effluent, GAC filtration effluent, and final tap water) were collected for two times and eight PFCs were measured. The results showed that seven kinds of PFCs (PFHxS, PFOS, PFHpA, PFOA, PFNA, PFDA, and PFUnDA) were detected in both plants with concentration range of 0.5–53.5 ng L−1, while the range of total concentration of all seven PFCs was 31–90 ng L−1. All detected PFCs were not removed effectively in both dates but removal was observed to some extent for certain PFCs (PFNA, PFDA, PFOS, and PFUnDA) by GAC filtration tank.


1988 ◽  
Vol 20 (10) ◽  
pp. 115-130 ◽  
Author(s):  
C. F. Guarino ◽  
B. P. Da-Rin ◽  
A. Gazen ◽  
E. P. Goettems

This paper presents the results of a study conducted with the purpose of establishing the feasibility of using activated carbon as an advanced treatment process for petrochemical wastewaters. Two pilot plants using Powdered Activated Carbon (PAC) and Granular Activated Carbon (GAC), respectively, were operated for a period of 15 weeks, fed with the effluent of a petrochemical wastewater treatment plant. The study was made using all available Brazilian carbons at the time. Isotherm tests and other carbon properties were used to select the carbons for GAC and PAC plants. The two pilot plants were operated between 8 April and 24 June 1981 at CETREL's wastewater treatment plant located at Camacari, BA, Brazil. The plant treats organic wastewaters from a petrochemical complex. During the first two GAC runs, low COD removal efficiencies were evident, and the effluent of all columns contained color due to the presence of organic colloids which were not adsorbed by the carbon. For this reason the feed to the system was pretreated to remove organic colloids. During the study period six GAC test runs were conducted using carbon GM and one using carbon HIDRO-G. Comparison of the two carbons showed that GM was the superior of the two. At all times, the GAC pilot plant using GM produced a colorless effluent from the amber-colored influent. At the same time, the PAC system, with a carbon dosage of 100 mg/l, was not capable of removing the color. One sample of carbon was regenerated to study its performance after regeneration. The analysis of the obtained data suggests that the adsorptive properties of the virgin and regenerated carbon may differ by as much as 12%. Several tests were made to determine the removal efficiency of priority pollutants in the GAC and PAC systems. These tests indicated that the GAC system is capable of reducing organic priority pollutants to below detectable limits. Metal analyses were made on several occasions on the GAC systems in addition to those conducted on priority pollutants samples. These tests indicated that metal concentrations in the GAC effluent were at or below the proposed effluent standards. The authors concluded that granular activated carbon is a sound advanced treatment process for petrochemical wastes to reduce organic priority pollutants to below detectable limits, producing an effluent with less than 150 mg/l COD.


2018 ◽  
Vol 77 (7) ◽  
pp. 1931-1941 ◽  
Author(s):  
Zhipeng Li ◽  
Feng Liu ◽  
Hong You ◽  
Yi Ding ◽  
Jie Yao ◽  
...  

Abstract This paper investigated the performance of the combined system of catalytic ozonation and the gas-liquid-solid internal circulating fluidized bed reactor for the advanced treatment of biologically pretreated coal chemical industry wastewater (CCIW). The results indicated that with ozonation alone for 60min, the removal efficiency of chemical oxygen demand (COD) could reach 34%. The introduction of activated carbon, pumice, γ-Al2O3 carriers improved the removal performance of COD, and the removal efficiency was increased by 8.6%, 4.2%, 2%, respectively. Supported with Mn, the catalytic performance of activated carbon and γ-Al2O3 were improved significantly with COD removal efficiencies of 46.5% and 41.3%, respectively; however, the promotion effect of pumice supported with Mn was insignificant. Activated carbon supported with Mn had the best catalytic performance. The catalytic ozonation combined system of MnOX/activated carbon could keep ozone concentration at a lower level in the liquid phase, and promote the transfer of ozone from the gas phase to the liquid phase to improve ozonation efficiency.


Sign in / Sign up

Export Citation Format

Share Document