DEPD®, A HIGH RESOLUTION GENE EXPRESSION PROFILING TECHNIQUE CAPABLE OF IDENTIFYING NEW DRUG TARGETS IN THE CENTRAL NERVOUS SYSTEM

2002 ◽  
Vol 22 (1-4) ◽  
pp. 283-295 ◽  
Author(s):  
Alfred Maelicke ◽  
Hermann Lübbert
2018 ◽  
Author(s):  
Raimunde Liang ◽  
Isabel Weigand ◽  
Barbara Altieri ◽  
Stefan Kircher ◽  
Sonja Steinhauer ◽  
...  

Gene ◽  
2004 ◽  
Vol 337 ◽  
pp. 91-103 ◽  
Author(s):  
Hidehiko Sugino ◽  
Tomoko Toyama ◽  
Yusuke Taguchi ◽  
Shigeyuki Esumi ◽  
Mitsuhiro Miyazaki ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Wei Zhang ◽  
You Zhai ◽  
Guanzhang Li ◽  
Tao Jiang

Abstract Background Glioma is the most common and fatal type of nerve neoplasm in the central nervous system. Several biomarkers have been considered for prognosis prediction, which is not accurate enough. We aimed to carry out a gene signature related to the expression of immune checkpoints which was enough for its performance in prediction. Methods Gene expression of immune checkpoints in TGGA database was filtrated. The 5 selected genes underwent verification by COX and Lasso-COX regression. Next, the selected genes were included to build a novel signature for further analysis. Results Patients were sub-grouped into high and low risk according to the novel signature. Immune response, clinicopathologic characters, and survival showed significant differences between those 2 groups. Terms including “naive,” “effector,” and “IL-4” were screened out by GSEA. The results showed strong relevance between the signature and immune response. Conclusions We constructed a gene signature with 5 immune checkpoints. The signature predicted survival effectively. The novel signature performed more functional than previous biomarkers.


Sign in / Sign up

Export Citation Format

Share Document