scholarly journals Uptake of chemically modified low density lipoproteins in vivo is mediated by specific endothelial cells.

1985 ◽  
Vol 100 (1) ◽  
pp. 103-117 ◽  
Author(s):  
R E Pitas ◽  
J Boyles ◽  
R W Mahley ◽  
D M Bissell

Acetoacetylated (AcAc) and acetylated (Ac) low density lipoproteins (LDL) are rapidly cleared from the plasma (t1/2 approximately equal to 1 min). Because macrophages, Kupffer cells, and to a lesser extent, endothelial cells metabolize these modified lipoproteins in vitro, it was of interest to determine whether endothelial cells or macrophages could be responsible for the in vivo uptake of these lipoproteins. As previously reported, the liver is the predominant site of the uptake of AcAc LDL; however, we have found that the spleen, bone marrow, adrenal, and ovary also participate in this rapid clearance. A histological examination of tissue sections, undertaken after the administration of AcAc LDL or Ac LDL (labeled with either 125I or a fluorescent probe) to rats, dogs, or guinea pigs, was used to identify the specific cells binding and internalizing these lipoproteins in vivo. With both techniques, the sinusoidal endothelial cells of the liver, spleen, bone marrow, and adrenal were labeled. Less labeling was noted in the ovarian endothelia. Uptake of AcAc LDL by endothelial cells of the liver, spleen, and bone marrow was confirmed by transmission electron microscopy. These data suggest uptake through coated pits. Uptake of AcAc LDL was not observed in the endothelia of arteries (including the coronaries and aorta), veins, or capillaries of the heart, testes, kidney, brain, adipose tissue, and duodenum. Kupffer cells accounted for a maximum of 14% of the 125I-labeled AcAc LDL taken up by the liver. Isolated sinusoidal endothelial cells from the rat liver displayed saturable, high affinity binding of AcAc LDL (Kd = 2.5 X 10(-9) M at 4 degrees C), and were shown to degrade AcAc LDL 10 times more effectively than aortic endothelial cells. These data indicate that specific sinusoidal endothelial cells, not the macrophages of the reticuloendothelial system, are primarily responsible for the removal of these modified lipoproteins from the circulation in vivo.

2013 ◽  
Vol 4 (5) ◽  
pp. 501-518 ◽  
Author(s):  
Mengxiao Lu ◽  
Olga Gursky

AbstractLow-density lipoproteins (LDLs, also known as ‘bad cholesterol’) are the major carriers of circulating cholesterol and the main causative risk factor of atherosclerosis. Plasma LDLs are 20- to 25-nm nanoparticles containing a core of cholesterol esters surrounded by a phospholipid monolayer and a single copy of apolipoprotein B (550 kDa). An early sign of atherosclerosis is the accumulation of LDL-derived lipid droplets in the arterial wall. According to the widely accepted ‘response-to-retention hypothesis’, LDL binding to the extracellular matrix proteoglycans in the arterial intima induces hydrolytic and oxidative modifications that promote LDL aggregation and fusion. This enhances LDL uptake by the arterial macrophages and triggers a cascade of pathogenic responses that culminate in the development of atherosclerotic lesions. Hence, LDL aggregation, fusion, and lipid droplet formation are important early steps in atherogenesis. In vitro, a variety of enzymatic and nonenzymatic modifications of LDL can induce these reactions and thereby provide useful models for their detailed analysis. Here, we summarize current knowledge of the in vivo and in vitro modifications of LDLs leading to their aggregation, fusion, and lipid droplet formation; outline the techniques used to study these reactions; and propose a molecular mechanism that underlies these pro-atherogenic processes. Such knowledge is essential in identifying endogenous and exogenous factors that can promote or prevent LDL aggregation and fusion in vivo and to help establish new potential therapeutic targets to decelerate or even block these pathogenic reactions.


1991 ◽  
Vol 278 (2) ◽  
pp. 515-519 ◽  
Author(s):  
Z Spolarics ◽  
G J Bagby ◽  
C H Lang ◽  
J J Spitzer

Alterations of glucose metabolism and the oxidation of glutamine and palmitate were studied, by using specifically labelled substrates, in freshly isolated Kupffer cells and hepatic endothelial cells after infusion in vivo of human recombinant tumour necrosis factor-alpha (TNF; 7.5 x 10(5) IU/30 min per kg body wt., intravenously). Cells were incubated in a medium containing 5 mM-glucose, 0.4 mM-palmitate, 1 mM-lactate and 0.5 mM-glutamine. Administration of TNF in vivo increased glucose use in Kupffer cells by 70%. Glucose oxidation in the tricarboxylic acid cycle and flux in the Embden-Meyerhof (EM) pathway were elevated by 40 and 80% respectively. Treatment in vitro with 1 microM-phorbol 12-myristate 13-acetate (PMA) resulted in a similar percentage increase in glucose use by Kupffer cells prepared from either saline- or TNF-treated rats. However, PMA increased the activity of the hexose monophosphate shunt (HMS) by 3- and 10-fold in cells isolated from saline- or TNF-infused animals respectively. A phagocyte stimulus in vitro, opsonized zymosan, increased glucose use by 30% and doubled the flux through the HMS in Kupffer cells from saline-infused animals. The activity of the HMS in response to zymosan was increased by 400% after TNF treatment. In endothelial cells, basal glucose utilization was not altered by TNF treatment. PMA increased HMS activity in endothelial cells to a similar degree after saline or TNF infusion. Zymosan, however, increased HMS activity only in endothelial cells from TNF-treated rats. Oxidation of palmitate or glutamine was not affected by TNF treatment either under basal conditions or after challenge in vitro. Our data indicate that, after phagocytosis in vitro or protein kinase C activation, glucose use and flux through the HMS increase in Kupffer cells. This is accompanied by increased glycolytic flux, with no changes in glucose oxidation in the tricarboxylic acid cycle. After TNF exposure, followed by a secondary stimulus, the enhanced glucose use by Kupffer cells is primarily channelled through the HMS pathway. These data suggest that the increased glucose use in vivo by Kupffer cells found after immune-stimulated conditions may subserve primarily the increased need for NADPH and HMS intermediates.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 32-32
Author(s):  
Lei Wang ◽  
Linda Yang ◽  
Marie–Dominique Filippi ◽  
David A. Williams ◽  
Yi Zheng

Abstract The Rho family GTPase Cdc42 has emerged as a key signal transducer in cell regulation. To investigate its physiologic function in hematopoiesis, we have generated mice carrying a gene targeted null allele of cdc42gap, a major negative regulatory gene of Cdc42 and mice with conditional targeted cdc42 allele (cdc42flox/flox). Deletion of the respective gene products in mice was confirmed by PCR genotyping and Western blotting. Low-density fetal liver or bone marrow cells from Cdc42GAP−/− mice displayed ~3 fold elevated Cdc42 activity and normal RhoA, Rac1 or Rac2 activity, indicating that cdc42gap deletion has a specific effect on Cdc42 activity. The Cdc42GAP-deficient hematopoietic stem/progenitor cells (HSC/Ps, Lin−c-Kit+) generated from Cdc42GAP−/− E14.5 fetal liver and the Cdc42−/− HSC/Ps derived by in vitro expression of Cre via a retrovirus vector from Cdc42flox/flox low density bone marrow showed a growth defect in liquid culture that was associated with increased apoptosis but normal cell cycle progression. Cdc42GAP-deficient HSC/Ps displayed impaired cortical F-actin assembly with extended actin protrusions upon exposure to SDF–1 in vitro and a punctuated actin structure after SCF stimulation while Cdc42−/− but not wild type HSC/Ps responded to SDF-1 in inducing membrane protrusions. Both Cdc42−/− and Cdc42GAP−/− HSC/Ps were markedly decreased in adhesion to fibronectin. Moreover, both Cdc42−/− and Cdc42GAP−/− HSC/Ps showed impaired migration in response to SDF-1. These results demonstrate that Cdc42 regulation is essential for multiple HSC/P functions. To understand the in vivo hematopoietic function of Cdc42, we have characterized the Cdc42GAP−/− mice further. The embryos and newborns of homozygous showed a ~30% reduction in hematopoietic organ (i.e. liver, bone marrow, thymus and spleen) cellularity, consistent with the reduced sizes of the animals. This was attributed to the increased spontaneous apoptosis associated with elevated Cdc42/JNK/Bid activities but not to a proliferative defect as revealed by in vivo TUNEL and BrdU incorporation assays. ~80% of Cdc42GAP−/− mice died one week after birth, and the surviving pups attained adulthood but were anemic. Whereas Cdc42GAP−/− mice contained small reduction in the frequency of HSC markers and normal CFU-G, CFU-M, and CFU-GM activities, the frequency of BFU-E and CFU-E were significantly reduced. These results suggest an important role of Cdc42 in erythropoiesis in vivo. Taken together, we propose that Cdc42 is essential for multiple HSC/P functions including survival, actin cytoskeleton regulation, adhesion and migration, and that deregulation of its activity can have a significant impact on erythropoiesis. Cdc42 regulates HSC/P functions and erythropoiesis Genotype/phenotype Apoptosis increase Adhesion decrease Migration decrease F-actin assembly HSC frequency decrease BFU-E, CFU-E decrease The numbers were indicated as fold difference compared with wild type. ND:not determined yet. Cdc42GAP−/− 2.43, p<0.005 0.97, p<0.01 1.01, p<0.01 protrusion (SDF-1); punctruated (SCF) 0.34, p<0.05 0.92, p<0.01; 0.38, p<0 Cdc42−/− 3.68, p<0.005 0.98, p<0.001 3.85, p<0.005 protrusion (SDF-1) ND ND


1988 ◽  
Vol 36 (9) ◽  
pp. 1081-1089 ◽  
Author(s):  
J Watanabe ◽  
K Kanai ◽  
S Kanamura

To determine whether hepatic sinusoidal cells contain glucagon receptors and, if so, to study the significance of the receptors in the cells, binding of [125I]-glucagon to nonparenchymal cells (mainly endothelial cells and Kupffer cells) isolated from mouse liver was examined by quantitative autoradiography and biochemical methods. Furthermore, the pathway of intracellular transport of colloidal gold-labeled glucagon (AuG) was examined in vivo. Autoradiographic and biochemical results demonstrated many glucagon receptors in both endothelial cells and Kupffer cells, and more receptors being present in endothelial cells than in Kupffer cells. In vivo, endothelial cells internalized AuG particles into coated vesicles via coated pits and transported the particles to endosomes, lysosomes, and abluminal plasma membrane. Therefore, receptor-mediated transcytosis of AuG occurs in endothelial cells. The number of particles present on the abluminal plasma membrane was constant if the amount of injected AuG increased. Therefore, the magnitude of receptor-mediated transcytosis of AuG appears to be regulated by endothelial cells. Kupffer cells internalized the ligand into cytoplasmic tubular structures via plasma membrane invaginations and transported the ligand exclusively to endosomes and lysosomes, suggesting that the ligand is degraded by Kupffer cells.


1994 ◽  
Vol 29 (4) ◽  
pp. 337-344 ◽  
Author(s):  
Gabriele Bittolo-Bon ◽  
Giuseppe Cazzolato ◽  
Pietro Avogaro

Sign in / Sign up

Export Citation Format

Share Document