lipid droplet formation
Recently Published Documents


TOTAL DOCUMENTS

224
(FIVE YEARS 16)

H-INDEX

35
(FIVE YEARS 0)

Author(s):  
Siyoung Kim ◽  
Chenghan Li ◽  
Robert V. Farese ◽  
Tobias C. Walther ◽  
Gregory A. Voth


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yoel A. Klug ◽  
Justin C. Deme ◽  
Robin A. Corey ◽  
Mike F. Renne ◽  
Phillip J. Stansfeld ◽  
...  

AbstractLipid droplets (LDs) are universal lipid storage organelles with a core of neutral lipids, such as triacylglycerols, surrounded by a phospholipid monolayer. This unique architecture is generated during LD biogenesis at endoplasmic reticulum (ER) sites marked by Seipin, a conserved membrane protein mutated in lipodystrophy. Here structural, biochemical and molecular dynamics simulation approaches reveal the mechanism of LD formation by the yeast Seipin Sei1 and its membrane partner Ldb16. We show that Sei1 luminal domain assembles a homooligomeric ring, which, in contrast to other Seipins, is unable to concentrate triacylglycerol. Instead, Sei1 positions Ldb16, which concentrates triacylglycerol within the Sei1 ring through critical hydroxyl residues. Triacylglycerol recruitment to the complex is further promoted by Sei1 transmembrane segments, which also control Ldb16 stability. Thus, we propose that LD assembly by the Sei1/Ldb16 complex, and likely other Seipins, requires sequential triacylglycerol-concentrating steps via distinct elements in the ER membrane and lumen.



2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Carla E. Cadena del Castillo ◽  
J. Thomas Hannich ◽  
Andres Kaech ◽  
Hirohisa Chiyoda ◽  
Jonathan Brewer ◽  
...  

AbstractHedgehog (Hh) signaling is essential during development and in organ physiology. In the canonical pathway, Hh binding to Patched (PTCH) relieves the inhibition of Smoothened (SMO). Yet, PTCH may also perform SMO-independent functions. While the PTCH homolog PTC-3 is essential in C. elegans, worms lack SMO, providing an excellent model to probe non-canonical PTCH function. Here, we show that PTC-3 is a cholesterol transporter. ptc-3(RNAi) leads to accumulation of intracellular cholesterol and defects in ER structure and lipid droplet formation. These phenotypes were accompanied by a reduction in acyl chain (FA) length and desaturation. ptc-3(RNAi)-induced lethality, fat content and ER morphology defects were rescued by reducing dietary cholesterol. We provide evidence that cholesterol accumulation modulates the function of nuclear hormone receptors such as of the PPARα homolog NHR-49 and NHR-181, and affects FA composition. Our data uncover a role for PTCH in organelle structure maintenance and fat metabolism.



2021 ◽  
Author(s):  
Henning Arlt ◽  
Xuewu Sui ◽  
Brayden Folger ◽  
Carson Adams ◽  
Xiao Chen ◽  
...  

Lipid droplets (LDs) form in the endoplasmic reticulum by phase separation of neutral lipids. This process is facilitated by the seipin protein complex, which consists of a ring of seipin monomers, with yet unclear function. Here, we report a structure of yeast seipin based on cryo-electron microscopy and structural modeling data. Seipin forms a decameric, cage-like structure with the lumenal domains forming a stable ring at the cage floor and transmembrane segments forming the cage sides and top. The transmembrane segments interact with adjacent monomers in two distinct, alternating conformations. These conformations result from changes in switch regions, located between the lumenal domains and the transmembrane segments, that are required for seipin function. Our data suggest a model for LD formation in which a closed seipin cage enables TG phase separation and subsequently switches to an open conformation to allow LD growth and budding.



2021 ◽  
Vol 8 ◽  
Author(s):  
Mengyu Wang ◽  
Junhui Xing ◽  
Mengduan Liu ◽  
Mingming Gao ◽  
Yangyang Liu ◽  
...  

Seipin locates in endoplasmic reticulum (ER) and regulates adipogenesis and lipid droplet formation. Deletion of Seipin has been well-demonstrated to cause severe general lipodystrophy, however, its role in maintaining perivascular adipose tissue (PVAT) and vascular homeostasis has not been directly assessed. In the present study, we investigated the role of Seipin in mediating the anticontractile effect of PVAT and vascular function. Seipin expression in PVAT and associated vessels were detected by qPCR and western-blot. Seipin is highly expressed in PVAT, but hardly in vessels. Structural and functional alterations of PVAT and associated vessels were compared between Seipin−/− mice and WT mice. In Seipin−/− mice, aortic and mesenteric PVAT were significantly reduced in mass and adipose-derived relaxing factors (ADRFs) secretion, but increased in macrophage infiltration and ER stress, as compared with those in WT mice. Aortic and mesenteric artery rings from WT and Seipin−/− mice were mounted on a wire myograph. Vasoconstriction and vasodilation were studied in vessels with and without PVAT. WT PVAT augmented relaxation but not Seipin−/− PVAT, which suggest impaired anticontractile function in PVAT of Seipin−/− mice. Thoracic aorta and mesenteric artery from Seipin−/− mice had impaired contractility in response to phenylephrine (PHE) and relaxation to acetylcholine (Ach). In conclusion, Seipin deficiency caused abnormalities in PVAT morphology and vascular functions. Our data demonstrated for the first time that Seipin plays a critical role in maintaining PVAT function and vascular homeostasis.



Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1750
Author(s):  
Heather K. Beasley ◽  
Taylor A. Rodman ◽  
Greg V. Collins ◽  
Antentor Hinton ◽  
Vernat Exil

Transmembrane proteins (TMEMs) are integral proteins that span biological membranes. TMEMs function as cellular membrane gates by modifying their conformation to control the influx and efflux of signals and molecules. TMEMs also reside in and interact with the membranes of various intracellular organelles. Despite much knowledge about the biological importance of TMEMs, their role in metabolic regulation is poorly understood. This review highlights the role of a single TMEM, transmembrane protein 135 (TMEM135). TMEM135 is thought to regulate the balance between mitochondrial fusion and fission and plays a role in regulating lipid droplet formation/tethering, fatty acid metabolism, and peroxisomal function. This review highlights our current understanding of the various roles of TMEM135 in cellular processes, organelle function, calcium dynamics, and metabolism.



2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Sujuan Wang ◽  
Meichan Yang ◽  
Julian Sit ◽  
Daniel Lank ◽  
Deqiang Zhang ◽  
...  


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Woei-Yaw Chee ◽  
Yuriko Kurahashi ◽  
Junhyeong Kim ◽  
Kyoko Miura ◽  
Daisuke Okuzaki ◽  
...  

AbstractThe naked mole-rat (NMR; Heterocephalus glaber) exhibits cancer resistance and an exceptionally long lifespan of approximately 30 years, but the mechanism(s) underlying increased longevity in NMRs remains unclear. In the present study, we report unique mechanisms underlying cholesterol metabolism in NMR cells, which may be responsible for their anti-senescent properties. NMR fibroblasts expressed β-catenin abundantly; this high expression was linked to increased accumulation of cholesterol-enriched lipid droplets. Ablation of β-catenin or inhibition of cholesterol synthesis abolished lipid droplet formation and induced senescence-like phenotypes accompanied by increased oxidative stress. β-catenin ablation downregulated apolipoprotein F and the LXR/RXR pathway, which are involved in cholesterol transport and biogenesis. Apolipoprotein F ablation also suppressed lipid droplet accumulation and promoted cellular senescence, indicating that apolipoprotein F mediates β-catenin signaling in NMR cells. Thus, we suggest that β-catenin in NMRs functions to offset senescence by regulating cholesterol metabolism, which may contribute to increased longevity in NMRs.



Sign in / Sign up

Export Citation Format

Share Document