scholarly journals The inhibition of neutrophil granule enzyme secretion and chemotaxis by pertussis toxin.

1985 ◽  
Vol 100 (5) ◽  
pp. 1641-1646 ◽  
Author(s):  
E L Becker ◽  
J C Kermode ◽  
P H Naccache ◽  
R Yassin ◽  
M L Marsh ◽  
...  

Pertussis toxin treatment of rabbit peritoneal neutrophils causes a concentration-dependent inhibition of granule enzyme secretion induced by formylmethionyl-leucyl-phenylalanine, C5a, and leukotriene B4. It also inhibits chemotaxis induced by formylmethionyl-leucyl-phenylalanine. The same toxin treatment, however, has no effect on granule enzyme secretion induced by the calcium ionophore A23187 or phorbol 12-myristate 13-acetate. Moreover, pertussis toxin treatment does not affect either the number or affinity of the formylpeptide receptors on the neutrophil nor does it have any effect on the unstimulated levels of cyclic AMP (cAMP) or the transient rise in cAMP induced by chemotactic factor stimulation in these cells. We hypothesize that pertussis toxin, as in other cells, interacts with a GTP binding regulatory protein identical with or analogous to either Ni or transducin which mediates the receptor-induced inhibition or activation of a target protein or proteins required in neutrophil activation. The nature of the target protein is unknown, but it is not the catalytic unit of adenylate cyclase. The target protein acts after binding of chemotactic factor to its receptor in the sequence that leads to the receptor-induced rise in intracellular Ca2+. It does not affect the responses elicited by the direct introduction of calcium into the cells or the activity of protein kinase C.

1985 ◽  
Vol 162 (1) ◽  
pp. 145-156 ◽  
Author(s):  
D W Goldman ◽  
F H Chang ◽  
L A Gifford ◽  
E J Goetzl ◽  
H R Bourne

Chemotactic factors stimulate a rapid increase in the cytosolic concentration of intracellular calcium ions ([Ca2+]in) in human polymorphonuclear leukocytes (PMNL), which may be an event that is critical to the expression of chemotaxis and other PMNL functions. Treatment of PMNL with pertussis toxin catalyzes ADP-ribosylation of a protein similar or identical to the inhibiting regulatory protein of adenylate cyclase, Gi, and suppresses the increase in [Ca2+]in elicited by leukotriene B4(LTB4) and formyl-methionyl-leucyl-phenylalanine. Chemotactic migration and lysosomal enzyme release elicited by chemotactic factors were inhibited by pertussis toxin with a concentration-dependence similar to that for inhibition of the increase in [Ca2+]in, without an effect on lysosomal enzyme release induced by the ionophore A23187 and phorbol myristate acetate. Activated pertussis toxin catalyzed the [32P]ADP-ribosylation of a 41 kD protein in homogenates of PMNL. The extent of [32P]ADP-ribosylation of this protein was reduced 59% by pretreatment of intact PMNL with pertussis toxin. Pertussis toxin selectively decreased the number of high-affinity receptors for LTB4 on PMNL by 60% without altering the number or binding properties of the low-affinity subset of receptors. Pertussis toxin modification of a membrane protein of PMNL analogous to Gi thus simultaneously alters chemotactic receptors and attenuates the changes in cytosolic calcium concentration and PMNL function caused by chemotactic factors.


Blood ◽  
1987 ◽  
Vol 70 (6) ◽  
pp. 1921-1927 ◽  
Author(s):  
M Shalit ◽  
GA Dabiri ◽  
FS Southwick

Abstract The phospholipid inflammatory mediator, platelet-activating factor (PAF), can stimulate polymorphonuclear leukocyte (PMN) chemotaxis. Conversion of cytoplasmic actin from monomers to filaments is associated with PMN motile functions. Using the fluorescent actin filament stain nitrobenzodiaxole phallicidin, we have investigated PAF's effects on human PMN actin polymerization. Concentrations of PAF between 1 x 10(-11) to 1 x 10(-6) mol/L induced actin filament (F- actin) assembly. An optimal concentration of PAF (1–5 x 10(-8) mol/L) induced a significantly lower rise in relative F-actin content (1.72 +/- 0.07 SEM) than an optimal concentration (5 x 10(-7) mol/L) of the chemotactic peptide FMLP (2.21 +/- 0.06). Unlike FMLP (F-actin content: 1.25 +/- 0.04 at five seconds), PAF stimulation was associated with a delay of more than five seconds (1.04 +/- 0.01 at five seconds) before an increase in F-actin could be detected. F-actin concentration reached maximum levels by 30 to 60 seconds. Prolonged stimulation (20 minutes) with PAF was associated with two phases of polymerization and depolymerization. Like FMLP, the initiation of actin filament assembly by PAF required receptor occupancy, this reaction being totally blocked by the PAF receptor inhibitor, SKI 63–441. As evidenced by the lack of inhibition by nordihydroguaiaretic acid (5 to 20 mumol/L), the production of leukotriene B4 was not required for the PAF-induced changes in F-actin. Like FMLP, PAF's ability to stimulate PMN actin polymerization was inhibited by pertussis toxin (.05 to 2.5 micrograms/mL) but not impaired by the addition of EGTA and/or the calcium ionophore A23187. Preincubation with 1 x 10(-11) to 1 x 10(-8) mol/L PAF for 2 to 60 minutes enhanced the rise in F-actin content induced by low concentrations of FMLP (5 x 10(-12) to 1 x 10(-10) mol/L) indicating that this phospholipid was capable of “priming” the PMN actin polymerization response.


1988 ◽  
Vol 1 (2) ◽  
pp. 109-114
Author(s):  
G. R. Elliott ◽  
A. P. M. Lauwen ◽  
I. L. Bonta

Dibutyryl cytidine and adenosine 3':5'-cyclic monophosphates (db-cCMP and db-cAMP respectively) inhibited the synthesis of thromboxane (TX) B2, the stable product of TXA2, and leukotriene (LT) B4 by 4-day carrageenin-elicited rat peritoneal macrophages stimulated by the calcium ionophore A23187. Incubation of macrophages with dbcAMP, at concentrations inhibiting eicosanoid release, was associated with an increase in intracellular cAMP concentrations. No such increase was seen when db-cCMP was used.


2014 ◽  
Vol 58 (8) ◽  
pp. 4298-4307 ◽  
Author(s):  
Carrie D. Fischer ◽  
Stephanie C. Duquette ◽  
Bernard S. Renaux ◽  
Troy D. Feener ◽  
Douglas W. Morck ◽  
...  

ABSTRACTThe accumulation of neutrophils and proinflammatory mediators, such as leukotriene B4(LTB4), is a classic marker of inflammatory disease. The clearance of apoptotic neutrophils, inhibition of proinflammatory signaling, and production of proresolving lipids (including lipoxins, such as lipoxin A4[LXA4]) are imperative for resolving inflammation. Tulathromycin (TUL), a macrolide used to treat bovine respiratory disease, confers immunomodulatory benefits via mechanisms that remain unclear. We recently reported the anti-inflammatory properties of TUL in bovine phagocytesin vitroand inMannheimia haemolytica-challenged calves. The findings demonstrated that this system offers a powerful model for investigating novel mechanisms of pharmacological immunomodulation. In the present study, we examined the effects of TUL in a nonbacterial model of pulmonary inflammationin vivoand characterized its effects on lipid signaling. In bronchoalveolar lavage (BAL) fluid samples from calves challenged with zymosan particles (50 mg), treatment with TUL (2.5 mg/kg of body weight) significantly reduced pulmonary levels of LTB4and prostaglandin E2(PGE2). In calcium ionophore (A23187)-stimulated bovine neutrophils, TUL inhibited phospholipase D (PLD), cytosolic phospholipase A2(PLA2) activity, and the release of LTB4. In contrast, TUL promoted the secretion of LXA4in resting and A23187-stimulated neutrophils, while levels of its precursor, 15(S)-hydroxyeicosatetraenoic acid [15(S)-HETE], were significantly lower. These findings indicate that TUL directly modulates lipid signaling by inhibiting the production of proinflammatory eicosanoids and promoting the production of proresolving lipoxins.


1986 ◽  
Vol 102 (4) ◽  
pp. 1459-1463 ◽  
Author(s):  
R I Sha'afi ◽  
J Shefcyk ◽  
R Yassin ◽  
T F Molski ◽  
M Volpi ◽  
...  

The addition of the calcium ionophore A23187 to rabbit neutrophils increases the amount of actin associated with the cytoskeleton regardless of the presence or absence of calcium in the incubation medium. In the presence of extracellular calcium, the effect of A23187 is biphasic with respect to concentration. The action of the ionophore is rapid, transient, and is inhibited by pertussis toxin, hyperosmolarity, and quinacrine. On the other hand, the addition of pertussis toxin or hyperosmolarity has small if any, effect on the rise in intracellular calcium produced by A23187. While quinacrine does not affect the fMet-Leu-Phe-induced increase in cytoskeletal actin and the polyphosphoinositide turnover, its addition inhibits completely the stimulated increase in Ca-influx produced by the same stimulus. The results presented here suggest that a rise in the intracellular concentration of free calcium is neither necessary nor sufficient for the stimulated increase in cytoskeletal-associated actin. A possible relationship between the lipid remodeling stimulated by chemoattractants and the increased cytoskeletal actin is discussed.


Blood ◽  
1989 ◽  
Vol 73 (2) ◽  
pp. 588-591 ◽  
Author(s):  
SR McColl ◽  
C Kreis ◽  
JF DiPersio ◽  
P Borgeat ◽  
PH Naccache

Abstract Pre-incubation of human neutrophils with pertussis toxin significantly inhibited the neutrophil-directed biologic actions of granulocyte- macrophage colony-stimulating factor (GM-CSF) in three separate assays: the induction of c-fos mRNA, the enhancement of both platelet- activating factor-induced mobilization of intracellular calcium, and stimulation of leukotriene synthesis by the calcium ionophore A23187. Cholera toxin did not have an effect on the latter two assays. Pre- treatment of human neutrophils with pertussis toxin did not affect the binding of GM-CSF to its surface receptor. These results provide the first evidence that a pertussis toxin substrate plays an important mediatory role in the mechanism of action of GM-CSF.


1982 ◽  
Vol 155 (2) ◽  
pp. 390-402 ◽  
Author(s):  
A Jörg ◽  
W R Henderson ◽  
R C Murphy ◽  
S J Klebanoff

Horse eosinophils purified to greater than 98% generated slow reacting substance (SRS) when incubated with the calcium ionophore A23187. On a per cell basis, eosinophils generated four to five times the SRS produced by similarly treated horse neutrophils. Eosinophil SRS production was inhibited by 5,8,11,14-eicosatetraynoic acid and augmented by indomethacin and arachidonic acid, suggesting that it was a product(s) of the lipoxygenase pathway of arachidonic acid metabolism. Compounds with SRS activity were purified by high-pressure liquid chromatography (HPLC) and identified by ultraviolet spectra, spectral shift on treatment with lipoxygenase, incorporation of [14C]arachidonic acid, gas chromatography-mass spectrometry, and comparison of retention times on HPLC to authentic standards. The eosinophil products characterized were 5-(S), 12-(R)-dihydroxy-6-cis-8, 10-trans-14-cis-eicosatetraenoic acid (leukotriene B4) and its 5-(S), 12-(R)-6-trans and 5-(S), 12-(S)-6-trans isomers, 5-(S)-hydroxy-6-(R)-S-glutathionyl-7,9-trans-11, 14-cis-eicosatetraenoic acid (leukotriene C4) and its 11-trans isomer, and 5-(S)-hydroxy-6-(R)-S-cysteinylglycine-7,9-trans-11,14-cis-eicosatetraenoic acid (leukotriene D4).


2007 ◽  
Vol 112 (7) ◽  
pp. 411-416 ◽  
Author(s):  
Annette Maznyczka ◽  
Massimo Mangino ◽  
Andrew Whittaker ◽  
Peter Braund ◽  
Tom Palmer ◽  
...  

Leukotrienes are implicated in the pathogenesis of coronary artery disease. Recently two haplotypes (HapA and HapB) in the gene encoding ALOX5AP (arachidonate 5-lipoxygenase-activating protein), the main regulator of 5-lipoxygenase, have been associated with a doubling of the risk of myocardial infarction. Studies have also shown that treatment with a leukotriene inhibitor reduces biomarkers of coronary risk in patients carrying HapA, raising the possibility of developing genotype-specific therapy. In the present study, we examined whether carriage of HapA or HapB is associated with increased LTB4 (leukotriene B4) production in healthy subjects. Age- and gender-matched healthy HapA carriers (n=21), HapB carriers (n=20) and non-A/non-B carriers (n=18), with no reported history of cardiovascular disease, were recruited following DNA screening of 1268 subjects from a population-based study. Blood neutrophils were isolated, and LTB4 production was measured in response to stimulation with 1 μmol/l of the calcium ionophore A23187. There was no difference in the mean level for LTB4 production in the three groups (non-A/non-B, 24.9±8.3 ng/106 cells; HapA, 22.2±11.9 ng/106 cells; HapB, 19.8±4.8 ng/106; P=0.14). The findings indicate that if either the HapA or the HapB haplotype of ALOX5AP indeed increases cardiovascular risk, then the mechanism is not simply due to a systematically observable effect of the haplotype on LTB4 production in response to stimulation. The results suggest that knowledge of a patient's haplotype may not provide useful information on the probable clinical response to ALOX5AP inhibitors.


1981 ◽  
Vol 45 (02) ◽  
pp. 158-161 ◽  
Author(s):  
Y Ikeda ◽  
M Kikuchi ◽  
K Toyama ◽  
K Watanabe ◽  
Y Ando

SummaryThe effects of verapamil, a coronary vasodilator, on platelet functions were studied.Platelet aggregation induced by ADP, epinephrine or collagen was inhibited by verapamil in vitro. Calcium ionophore A23187-induced platelet aggregation was also inhibited by verapamil in a concentration dependent manner. In washed platelets, verapamil caused a dose-dependent inhibition of serotonin release induced either by thrombin or A23187 in the absence of extracellular calcium. Addition of 1 mM CaCl2 with A23187 or thrombin partially overcame this inhibition. Addition of 1 mM CaCl2 in the absence of verapamil had no effect on thrombin- or A23187-induced secretion. When verapamil was administered to the healthy volunteers at the dosage commonly used, inhibition of platelet aggregation was observed 2 hrs after the drug ingestion. It is of great interest that verapamil potentiated the anti-aggregating activity of prostacyclin in vitro.Our results may suggest a potential role for verapamil in the treatment of thrombotic disorders.


Blood ◽  
1990 ◽  
Vol 76 (10) ◽  
pp. 2098-2104 ◽  
Author(s):  
PH Naccache ◽  
C Gilbert ◽  
AC Caon ◽  
M Gaudry ◽  
CK Huang ◽  
...  

Abstract The role of tyrosine kinases in the responses of human neutrophils to chemotactic factors was examined using the recently described inhibitor erbstatin. Pre-incubation with erbstatin decreased the amount of tyrosine phosphorylation induced by the formylated oligopeptide formyl- methionyl-leucyl-phenylalanine (fMet-Leu-Phe) without effecting the binding of [3H]-fMet-Leu-Phe. Erbstatin also dose-dependently inhibited the production of superoxide anion induced by fMet-Leu-Phe and platelet- activating factor, but did not affect the oxidative burst induced by either the calcium ionophore A23187 or the phorbol ester phorbol 12- myristate 13-acetate. Furthermore, erbstatin diminished the cytosolic acidification elicited by fMet-Leu-Phe, platelet-activating factor, and leukotriene B4. In contrast, erbstatin was without effect on the increase in the levels of cytoplasmic free calcium and polymerized actin elicited by fMet-Leu-Phe, C5a, leukotriene B4 and platelet- activating factor, whereas the increase in cytoplasmic free calcium elicited by platelet-derived growth factor was inhibited by erbstatin. In addition, erbstatin affected neither the release of elastase stimulated by these agonists nor the release of beta-glucosaminidase, lysozyme or vitamin B12-binding protein induced by fMet-Leu-Phe. These results indicate that tyrosine protein kinases are involved in the signaling pathways employed by chemotactic factors in the stimulation of selective functional responses (and superoxide production in particular) in human neutrophils.


Sign in / Sign up

Export Citation Format

Share Document