scholarly journals Dissociation of Madin-Darby canine kidney epithelial cells by the monoclonal antibody anti-arc-1: mechanistic aspects and identification of the antigen as a component related to uvomorulin.

1985 ◽  
Vol 101 (4) ◽  
pp. 1307-1315 ◽  
Author(s):  
J Behrens ◽  
W Birchmeier ◽  
S L Goodman ◽  
B A Imhof

It has previously been shown that the monoclonal antibody anti-Arc-1 dissociates Madin-Darby canine kidney (MDCK) epithelial cells and changes their morphology in vitro (Imhof, B.A., H.P. Vollmers, S.L. Goodman, and W. Birchmeier, 1983, Cell, 35:667-675). In this article we demonstrate that the anti-Arc-1 antibody recognizes an uvomorulin-like molecule on MDCK cells, i.e., it immunoprecipitates an 84-kD protein fragment from a tryptic digest of cell surfaces in the presence of Ca2+ (as does anti-uvomorulin antiserum). Furthermore, anti-uvomorulin antiserum prevents the binding of anti-Arc-1 to MDCK cells. The distribution of the Arc-1 antigen is also quite similar to that of uvomorulin: it is enriched at the cell-cell contacts both of MDCK cells and of cells in various canine tissues. In the intestinal epithelium the antigen could be further localized in the region of the junctional complex. To study the mechanism of action of the dissociating antibody, MDCK cells grown on Nuclepore filters in Boyden chambers were exposed to anti-Arc-1 from either the upper or lower compartment. It could be shown that the antibody interfered with cell adhesion only from the basolateral but not from the apical cell surface. Antibody action was inhibited in the presence of colchicine but not cytochalasin B. Furthermore, cell dissociation was prevented when the cellular cAMP level was raised. These findings indicate that the anti-Arc-1 antibody acts on a target below the tight junctions (possibly on the antigen located in the junctional complex), and they confirm that cytoskeleton and metabolic factors are actively involved in the maintenance of junctional integrity.

1987 ◽  
Vol 7 (4) ◽  
pp. 1326-1337
Author(s):  
S L Warren ◽  
W J Nelson

Madin-Darby canine kidney (MDCK) cells form polarized, multicellular epithelial structures in vitro. Low-level expression of pp60v-src in MDCK cells elicits plasticity in these multicellular structures. Plasticity was revealed by the displacement of cells from mechanically stressed regions of the epithelial monolayers; however, the two-dimensional relationship between the cells in the remainder of the monolayer was maintained. Electron microscopy of multicellular structures revealed abnormal separation of the lateral membranes of adjacent cells and selective uncoupling of the junctional complex; the zonula adherens was disrupted, but the zonula occludens and desmosomes were retained. Significantly, this result was not accompanied by transformation of the cells, as judged by the absence of anchorage-independent growth potential. These results demonstrate a nonmitogenic biological activity of pp60v-src which is experimentally dissociable from transformation. This morphoregulatory action on higher-order epithelial structures may reflect a function of related cellular tyrosine kinases.


1987 ◽  
Vol 7 (4) ◽  
pp. 1326-1337 ◽  
Author(s):  
S L Warren ◽  
W J Nelson

Madin-Darby canine kidney (MDCK) cells form polarized, multicellular epithelial structures in vitro. Low-level expression of pp60v-src in MDCK cells elicits plasticity in these multicellular structures. Plasticity was revealed by the displacement of cells from mechanically stressed regions of the epithelial monolayers; however, the two-dimensional relationship between the cells in the remainder of the monolayer was maintained. Electron microscopy of multicellular structures revealed abnormal separation of the lateral membranes of adjacent cells and selective uncoupling of the junctional complex; the zonula adherens was disrupted, but the zonula occludens and desmosomes were retained. Significantly, this result was not accompanied by transformation of the cells, as judged by the absence of anchorage-independent growth potential. These results demonstrate a nonmitogenic biological activity of pp60v-src which is experimentally dissociable from transformation. This morphoregulatory action on higher-order epithelial structures may reflect a function of related cellular tyrosine kinases.


2006 ◽  
Vol 17 (8) ◽  
pp. 3345-3355 ◽  
Author(s):  
Maya Elbert ◽  
David Cohen ◽  
Anne Müsch

Mammalian Par1 is a family of serine/threonine kinases comprised of four homologous isoforms that have been associated with tumor suppression and differentiation of epithelial and neuronal cells, yet little is known about their cellular functions. In polarizing kidney epithelial (Madin-Darby canine kidney [MDCK]) cells, the Par1 isoform Par1b/MARK2/EMK1 promotes the E-cadherin–dependent compaction, columnarization, and cytoskeletal organization characteristic of differentiated columnar epithelia. Here, we identify two functions of Par1b that likely contribute to its role as a tumor suppressor in epithelial cells. 1) The kinase promotes cell–cell adhesion and resistance of E-cadherin to extraction by nonionic detergents, a measure for the association of the E-cadherin cytoplasmic domain with the actin cytoskeleton, which is critical for E-cadherin function. 2) Par1b attenuates the effect of Dishevelled (Dvl) expression, an inducer of wnt signaling that causes transformation of epithelial cells. Although Dvl is a known Par1 substrate in vitro, we determined, after mapping the PAR1b-phosphorylation sites in Dvl, that PAR1b did not antagonize Dvl signaling by phosphorylating the wnt-signaling molecule. Instead, our data suggest that both proteins function antagonistically to regulate the assembly of functional E-cadherin–dependent adhesion complexes.


2002 ◽  
Vol 30 (2_suppl) ◽  
pp. 53-59 ◽  
Author(s):  
Tracey Duff ◽  
Simon Carter ◽  
Gemma Feldman ◽  
Gordon McEwan ◽  
Walter Pfaller ◽  
...  

Transepithelial electrical resistance (RT) and the flux of fluorescein isothiocyanate (FITC) across Madin Darby canine kidney (MDCK) strain 1 cells and porcine epithelial kidney (LLC-PK1) monolayers were compared between three laboratories for a range of nephrotoxins. The precision of the REMS AutoSampler was similar to that of the Ussing chamber and the ENDOHM® technique, but superior to using chopstick electrodes, for measurements of resistance. The nephrotoxins used were selective for the proximal tubule, and in all cases, LLC-PK1 cells were more sensitive than MDCK cells. In most cases, change in RT was a more sensitive indicator of damage than alterations in FITC flux. The REMS system provides high intra-plate precision for RT measurements and is a higher throughput system, which is applicable to screening for nephrotoxicity in vitro.


1990 ◽  
Vol 1 (12) ◽  
pp. 921-936 ◽  
Author(s):  
M J van Zeijl ◽  
K S Matlin

The effects of microtubule perturbation on the transport of two different viral glycoproteins were examined in infected Madin-Darby canine kidney (MDCK) cells grown on both permeable and solid substrata. Quantitative biochemical analysis showed that the microtubule-depolymerizing drug nocodazole inhibited arrival of influenza hemagglutinin on the apical plasma membrane in MDCK cells grown on both substrata. In contrast, the microtubule-stabilizing drug taxol inhibited apical appearance of hemagglutinin only when MDCK cells were grown on permeable substrata. On the basis of hemagglutinin mobility on sodium dodecyl sulfate gels and its sensitivity to endo H, it was evident that nocodazole and taxol arrested hemagglutinin at different intracellular sites. Neither drug caused a significant increase in the amount of hemagglutinin detected on the basolateral plasma membrane domain. In addition, neither drug had any noticeable effect on the transport of the vesicular stomatitis virus (VSV)-G protein to the basolateral surface. These results shed light on previous conflicting reports using this model system and support the hypothesis that microtubules play a role in the delivery of membrane glycoproteins to the apical, but not the basolateral, domain of epithelial cells.


1996 ◽  
Vol 270 (1) ◽  
pp. F220-F228 ◽  
Author(s):  
E. S. Quabius ◽  
H. Murer ◽  
J. Biber

Two cD-NAs coding for proximal tubular Na-Pi cotransport (NaPi-2) and Na-SO4 cotransport (NaSi-1) have been transfected by the use of a dexamethasone-inducible vector (pLK-neo) into MDCK and LLC-PK1 cells. By reverse transcription-polymerase chain reaction, expression of corresponding mRNAs was observed after stimulation with dexamethasone only. Similarly, expression of the NaPi-2 protein was detected only after induction with dexamethasone. In transfected Madin-Darby canine kidney (MDCK) cells, dexamethasone induced a large increase of Na-Pi or Na-SO4 cotransport, whereas, in transfected LLC-PK1, cell transport was only minimally expressed. In MDCK cells grown on filter supports, transfected Na-Pi-cotransport activity was equally expressed at both cell surfaces; dual location of expressed NaPi-2 protein was also observed by immunohistochemistry. In contrast, transfected Na-SO4 cotransport activity was predominantly expressed at the apical cell surface of MDCK cells. The results demonstrate that 1), in MDCK cells, the sorting behavior of two proximal tubular cotransport systems seems to be different: apical for Na-SO4 cotransport (NaSi-1) and dual location for Na-Pi cotransport (NaPi-2); and 2) LLC-PK1 cells seem not to be a suitable system to functionally express sodium-dependent cotransport systems for phosphate and sulfate.


2004 ◽  
Vol 164 (5) ◽  
pp. 717-727 ◽  
Author(s):  
David Cohen ◽  
Patrick J. Brennwald ◽  
Enrique Rodriguez-Boulan ◽  
Anne Müsch

Epithelial differentiation involves the generation of luminal surfaces and of a noncentrosomal microtubule (MT) network aligned along the polarity axis. Columnar epithelia (e.g., kidney, intestine, and Madin-Darby canine kidney [MDCK] cells) generate apical lumina and orient MT vertically, whereas liver epithelial cells (hepatocytes and WIFB9 cells) generate lumina at cell–cell contact sites (bile canaliculi) and orient MTs horizontally. We report that knockdown or inhibition of the mammalian orthologue of Caenorhabditis elegans Par-1 (EMK1 and MARK2) during polarization of cultured MDCK and WIFB9 cells prevented development of their characteristic lumen and nonradial MT networks. Conversely, EMK1 overexpression induced the appearance of intercellular lumina and horizontal MT arrays in MDCK cells, making EMK1 the first known candidate to regulate the developmental branching decision between hepatic and columnar epithelial cells. Our experiments suggest that EMK1 primarily promotes reorganization of the MT network, consistent with the MT-regulating role of this gene product in other systems, which in turn controls lumen formation and position.


1987 ◽  
Vol 104 (6) ◽  
pp. 1527-1537 ◽  
Author(s):  
W J Nelson ◽  
P J Veshnock

During growth of Madin-Darby canine kidney (MDCK) epithelial cells, there is a dramatic change in the stability, biophysical properties, and distribution of the membrane skeleton (fodrin) which coincides temporally and spatially with the development of the polarized distribution of the Na+, K+-ATPase, a marker protein of the basolateral domain of the plasma membrane. These changes occur maximally upon the formation of a continuous monolayer of cells, indicating that extensive cell-cell contact may play an important role in the organization of polarized MDCK cells (Nelson, W. J., and P. J. Veshnock, 1986, J. Cell Biol., 103:1751-1766). To directly analyze the role of cell-cell contact in these events, we have used an assay in which the organization of fodrin and membrane proteins is analyzed in confluent monolayers of MDCK cells in the absence or presence of cell-cell contact by adjusting the concentration Ca++ in the growth medium. Our results on the stability and solubility properties of fodrin reported here show directly that there is a positive correlation between cell-cell contact and increased stability and insolubility of fodrin. Furthermore, we show that fodrin can be recruited from an unstable pool of protein to a stable pool during induction of cell-cell contact; significantly, the stabilization of fodrin is not affected by the addition of cyclohexamide, indicating that proteins normally synthesized during the induction of cell-cell contact are not required. Together these results indicate that cell-cell contact may play an important role in the development of polarity in MDCK cells by initiating the formation of a stable, insoluble matrix of fodrin with preexisting (membrane) proteins at the cell periphery. This matrix may function subsequently to trap proteins targeted to the membrane, resulting in the maintenance of membrane domains.


1999 ◽  
Vol 146 (2) ◽  
pp. 313-320 ◽  
Author(s):  
Jürgen H. Benting ◽  
Anton G. Rietveld ◽  
Kai Simons

Glycosyl-phosphatidylinositol (GPI)- anchored proteins are preferentially transported to the apical cell surface of polarized Madin-Darby canine kidney (MDCK) cells. It has been assumed that the GPI anchor itself acts as an apical determinant by its interaction with sphingolipid-cholesterol rafts. We modified the rat growth hormone (rGH), an unglycosylated, unpolarized secreted protein, into a GPI-anchored protein and analyzed its surface delivery in polarized MDCK cells. The addition of a GPI anchor to rGH did not lead to an increase in apical delivery of the protein. However, addition of N-glycans to GPI-anchored rGH resulted in predominant apical delivery, suggesting that N-glycans act as apical sorting signals on GPI-anchored proteins as they do on transmembrane and secretory proteins. In contrast to the GPI-anchored rGH, a transmembrane form of rGH which was not raft-associated accumulated intracellularly. Addition of N-glycans to this chimeric protein prevented intracellular accumulation and led to apical delivery.


2010 ◽  
Vol 21 (22) ◽  
pp. 3926-3933 ◽  
Author(s):  
Minji Kim ◽  
Lucy Erin O'Brien ◽  
Sang-Ho Kwon ◽  
Keith E. Mostov

Tubule formation in vitro using Madin-Darby canine kidney (MDCK) epithelial cells consists mainly of two processes. First, the cells undergo a partial epithelial–mesenchymal transition (pEMT), losing polarity and migrating. Second, the cells redifferentiate, forming cords and then tubules with continuous lumens. We have shown previously that extracellular signal-regulated kinase activation is required for pEMT. However, the mechanism of how the pEMT phase is turned off and the redifferentiation phase is initiated is largely unknown. To address the central question of the sequential control of these two phases, we used MDCK cells grown as cysts and treated with hepatocyte growth factor to model tubulogenesis. We show that signal transducer and activator of transcription (STAT)1 controls the sequential progression from the pEMT phase to the redifferentiation phase. Loss of STAT1 prevents redifferentiation. Constitutively active STAT1 allows redifferentiation to occur even when cells are otherwise prevented from progressing beyond the pEMT phase by exogenous activation of Raf. Moreover, tyrosine phosphorylation defective STAT1 partially restored cord formation in such cells, suggesting that STAT1 functions in part as nonnuclear protein mediating signal transduction in this process. Constitutively active or inactive forms of STAT1 did not promote lumen maturation, suggesting this requires a distinct signal.


Sign in / Sign up

Export Citation Format

Share Document