scholarly journals How actin binds and assembles onto plasma membranes from Dictyostelium discoideum.

1988 ◽  
Vol 107 (1) ◽  
pp. 201-209 ◽  
Author(s):  
M A Schwartz ◽  
E J Luna

We have shown previously (Schwartz, M. A., and E. J. Luna. 1986. J. Cell Biol. 102: 2067-2075) that actin binds with positive cooperativity to plasma membranes from Dictyostelium discoideum. Actin is polymerized at the membrane surface even at concentrations well below the critical concentration for polymerization in solution. Low salt buffer that blocks actin polymerization in solution also prevents actin binding to membranes. To further explore the relationship between actin polymerization and binding to membranes, we prepared four chemically modified actins that appear to be incapable of polymerizing in solution. Three of these derivatives also lost their ability to bind to membranes. The fourth derivative (EF actin), in which histidine-40 is labeled with ethoxyformic anhydride, binds to membranes with reduced affinity. Binding curves exhibit positive cooperativity, and cross-linking experiments show that membrane-bound actin is multimeric. Thus, binding and polymerization are tightly coupled, and the ability of these membranes to polymerize actin is dramatically demonstrated. EF actin coassembles weakly with untreated actin in solution, but coassembles well on membranes. Binding by untreated actin and EF actin are mutually competitive, indicating that they bind to the same membrane sites. Hill plots indicate that an actin trimer is the minimum assembly state required for tight binding to membranes. The best explanation for our data is a model in which actin oligomers assemble by binding to clustered membrane sites with successive monomers on one side of the actin filament bound to the membrane. Individual binding affinities are expected to be low, but the overall actin-membrane avidity is high, due to multivalency. Our results imply that extracellular factors that cluster membrane proteins may create sites for the formation of actin nuclei and thus trigger actin polymerization in the cell.

1990 ◽  
Vol 110 (3) ◽  
pp. 681-692 ◽  
Author(s):  
A Shariff ◽  
E J Luna

In previous equilibrium binding studies, Dictyostelium discoideum plasma membranes have been shown to bind actin and to recruit actin into filaments at the membrane surface. However, little is known about the kinetic pathway(s) through which actin assembles at these, or other, membranes. We have used actin fluorescently labeled with N-(1-pyrenyl)iodoacetamide to examine the kinetics of actin assembly in the presence of D. discoideum plasma membranes. We find that these membranes increase the rate of actin polymerization. The rate of membrane-mediated actin polymerization is linearly dependent on membrane protein concentrations up to 20 micrograms/ml. Nucleation (the association of activated actin monomers into oligomers) appears to be the primary step of polymerization that is accelerated. A sole effect on the initial salt-induced actin conformational change (activation) is ruled out because membranes accelerate the polymerization of pre-activated actin as well as actin activated in the presence of membranes. Elongation of preexisting filaments also is not the major step of polymerization facilitated by membranes since membranes stripped of all peripheral components, including actin, increase the rate of actin assembly to about the same extent as do membranes containing small amounts of endogenous actin. Acceleration of the nucleation step by membranes also is supported by an analysis of the dependence of polymerization lag time on actin concentration. The barbed ends of membrane-induced actin nuclei are not obstructed by the membranes because the barbed end blocking agent, cytochalasin D, reduces the rate of membrane-mediated actin nucleation. Similarly, the pointed ends of the nuclei are not blocked by membranes since the depolymerization rate of gelsolin-capped actin is unchanged in the presence of membranes. These results are consistent with previous observations of lateral interactions between membranes and actin filaments. These results also are consistent with two predictions from a model based on equilibrium binding studies; i.e., that plasma membranes should nucleate actin assembly and that membrane-bound actin nuclei should have both ends free (Schwartz, M. A., and E. J. Luna. 1988. J. Cell Biol. 107:201-209). Integral membrane proteins mediate the actin nucleation activity because activity is eliminated by heat denaturation, treatment with reducing agents, or proteolysis of membranes. Activity also is abolished by solubilization with octylglucoside but is reconstituted upon removal or dilution of the detergent. Ponticulin, the major actin-binding protein in plasma membranes, appears to be necessary for nucleation activity since activity is not reconstituted from detergent extracts depleted of ponticulin.


1991 ◽  
Vol 100 (3) ◽  
pp. 481-489 ◽  
Author(s):  
M. Haugwitz ◽  
A.A. Noegel ◽  
D. Rieger ◽  
F. Lottspeich ◽  
M. Schleicher

Two profilin isoforms (profilins I and II) have been purified from Dictyostelium discoideum, using affinity chromatography on a poly(L-proline) matrix; the isoforms could be separated by cation-exchange chromatography on a FPLC system. The gene coding for profilin I was cloned from a lambda gt11 cDNA library using a profilin I-specific monoclonal antibody. The profilin II cDNA was isolated by probing the cDNA library with an oligonucleotide deduced from the N-terminal amino acid sequence of profilin II, which has an open N terminus in contrast to profilin I. The deduced amino acid sequences of both genes show that profilin I in comparison to profilin II is slightly larger (13,064 Da vs 12,729 Da), has a more acidic isoelectric point (calc. pI 6.62 vs 7.26) and shares with profilin II 68 identical residues out of 126 amino acids. Although both profilins contain a conserved lysine residue in the putative actin-binding region and can be crosslinked covalently to G-actin, the crosslinking efficiency of profilin II to actin is substantially higher than that of profilin I. These data are in agreement with studies on the functional properties of the profilin isoforms. In most preparations profilin II was more efficient in delaying the onset of elongation during the course of actin polymerization and caused a higher critical concentration for actin polymerization than profilin I, probably due to the slightly increased affinity of profilin II for D. discoideum G-actin (approx. Kd 1.8 × 10(−6) M) as compared to that of profilin I (approx. Kd 5.1 × 10(−6) M).(ABSTRACT TRUNCATED AT 250 WORDS)


1986 ◽  
Vol 102 (6) ◽  
pp. 2067-2075 ◽  
Author(s):  
M A Schwartz ◽  
E J Luna

The binding of native, 125I-Bolton-Hunter-labeled actin to purified Dictyostelium discoideum plasma membranes was measured using a sedimentation assay. Binding was saturable only in the presence of the actin capping protein, gelsolin. In the presence of gelsolin, the amount of actin bound at saturation to three different membrane preparations was 80, 120, and 200 micrograms/mg of membrane protein. The respective concentrations of actin at half-saturation were 8, 12, and 18 micrograms/ml. The binding curves were sigmoidal, indicating positive cooperativity at low actin concentrations. This cooperativity appeared to be due to actin-actin associations during polymerization, since phalloidin converted the curve to a hyperbolic shape. In kinetic experiments, actin added as monomers bound to membranes at a rate of 0.6 microgram ml-1 min-1, while pre-polymerized actin bound at a rate of 3.0 micrograms ml-1 min-1. Even in the absence of phalloidin, actin bound to membranes at concentrations well below the normal critical concentration. This membrane-bound actin stained with rhodamine-phalloidin and was cross-linked by m-maleimidobenzoyl succinimide ester, a bifunctional cross-linker, into multimers with the same pattern observed for cross-linked F-actin. We conclude that D. discoideum plasma membranes bind actin specifically and saturably and that these membranes organize actin into filaments below the normal critical concentration for polymerization. This interaction probably occurs between multiple binding sites on the membrane and the side of the actin filament, and may be related to the clustering of membrane proteins.


1989 ◽  
Vol 109 (4) ◽  
pp. 1519-1528 ◽  
Author(s):  
H Miyata ◽  
B Bowers ◽  
E D Korn

Myosin I accounted for approximately 2% of the protein of highly purified plasma membranes, which represents about a tenfold enrichment over its concentration in the total cell homogenate. This localization is consistent with immunofluorescence analysis of cells that shows myosin I at or near the plasma membrane as well as diffusely distributed in the cytoplasm with no apparent association with cytoplasmic organelles or vesicles identifiable at the level of light microscopy. Myosin II was not detected in the purified plasma membrane fraction. Although actin was present in about a tenfold molar excess relative to myosin I, several lines of evidence suggest that the principal linkage of myosin I with the plasma membrane is not through F-actin: (a) KI extracted much more actin than myosin I from the plasma membrane fraction; (b) higher ionic strength was required to solubilize the membrane-bound myosin I than to dissociate a complex of purified myosin I and F-actin; and (c) added purified myosin I bound to KI-extracted plasma membranes in a saturable manner with maximum binding four- to fivefold greater than the actin content and with much greater affinity than for pure F-actin (apparent KD of 30-50 nM vs. 10-40 microM in 0.1 M KCl plus 2 mM MgATP). Thus, neither the MgATP-sensitive actin-binding site in the NH2-terminal end of the myosin I heavy chain nor the MgATP-insensitive actin-binding site in the COOH-terminal end of the heavy chain appeared to be the principal mechanism of binding of myosin I to plasma membranes through F-actin. Furthermore, the MgATP-sensitive actin-binding site of membrane-bound myosin I was still available to bind added F-actin. However, the MgATP-insensitive actin-binding site appeared to be unable to bind added F-actin, suggesting that the membrane-binding site is near enough to this site to block sterically its interaction with actin.


1993 ◽  
Vol 120 (4) ◽  
pp. 909-922 ◽  
Author(s):  
C P Chia ◽  
A Shariff ◽  
S A Savage ◽  
E J Luna

Ponticulin, an F-actin binding transmembrane glycoprotein in Dictyostelium plasma membranes, was isolated by detergent extraction from cytoskeletons and purified to homogeneity. Ponticulin is an abundant membrane protein, averaging approximately 10(6) copies/cell, with an estimated surface density of approximately 300 per microns2. Ponticulin solubilized in octylglucoside exhibited hydrodynamic properties consistent with a ponticulin monomer in a spherical or slightly ellipsoidal detergent micelle with a total molecular mass of 56 +/- 6 kD. Purified ponticulin nucleated actin polymerization when reconstituted into Dictyostelium lipid vesicles, but not when a number of commercially available lipids and lipid mixtures were substituted for the endogenous lipid. The specific activity was consistent with that expected for a protein comprising 0.7 +/- 0.4%, by mass, of the plasma membrane protein. Ponticulin in octylglucoside micelles bound F-actin but did not nucleate actin assembly. Thus, ponticulin-mediated nucleation activity was sensitive to the lipid environment, a result frequently observed with transmembrane proteins. At most concentrations of Dictyostelium lipid, nucleation activity increased linearly with increasing amounts of ponticulin, suggesting that the nucleating species is a ponticulin monomer. Consistent with previous observations of lateral interactions between actin filaments and Dictyostelium plasma membranes, both ends of ponticulin-nucleated actin filaments appeared to be free for monomer assembly and disassembly. Our results indicate that ponticulin is a major membrane protein in Dictyostelium and that, in the proper lipid matrix, it is sufficient for lateral nucleation of actin assembly. To date, ponticulin is the only integral membrane protein known to directly nucleate actin polymerization.


1987 ◽  
Vol 105 (4) ◽  
pp. 1741-1751 ◽  
Author(s):  
L J Wuestehube ◽  
E J Luna

F-actin affinity chromatography and immunological techniques are used to identify actin-binding proteins in purified Dictyostelium discoideum plasma membranes. A 17-kD integral glycoprotein (gp17) consistently elutes from F-actin columns as the major actin-binding protein under a variety of experimental conditions. The actin-binding activity of gp17 is identical to that of intact plasma membranes: it resists extraction with 0.1 N NaOH, 1 mM dithiothreitol (DTT); it is sensitive to ionic conditions; it is stable over a wide range of pH; and it is eliminated by proteolysis, denaturation with heat, or treatment with DTT and N-ethylmaleimide. gp17 may be responsible for much of the actin-binding activity of plasma membranes since monovalent antibody fragments (Fab) directed primarily against gp17 inhibit actin-membrane binding by 96% in sedimentation assays. In contrast, Fab directed against cell surface determinants inhibit binding by only 0-10%. The actin-binding site of gp17 appears to be located on the cytoplasmic surface of the membrane since Fab against this protein continue to inhibit 96% of actin-membrane binding even after extensive adsorption against cell surfaces. gp17 is abundant in the plasma membrane, constituting 0.4-1.0% of the total membrane protein. A transmembrane orientation of gp17 is suggested since, in addition to the cytoplasmic localization of the actin-binding site, extracellular determinants of gp17 are identified. gp17 is surface-labeled by sulfo-N-hydroxy-succinimido-biotin, a reagent that cannot penetrate the cell membrane. Also, gp17 is glycosylated since it is specifically bound by the lectin, concanavalin A. We propose that gp17 is a major actin-binding protein that is important for connecting the plasma membrane to the underlying microfilament network. Therefore, we have named this protein "ponticulin" from the Latin word, ponticulus, which means small bridge.


1997 ◽  
Vol 327 (3) ◽  
pp. 787-793 ◽  
Author(s):  
Edda BALLWEBER ◽  
Ewald HANNAPPEL ◽  
Thomas HUFF ◽  
Hans Georg MANNHERZ

The β-thymosins are small monomeric (G-)actin-binding proteins of 5 kDa that are supposed to act intracellularly as actin-sequestering factors stabilizing the cytoplasmic monomeric pool of actin. The binding region of thymosin β4 was determined by analysing the binding of thymosin β4 to actin complexed with DNase I, gelsolin or gelsolin segment 1. Binding was analysed by determining the increase in the critical concentration of actin polymerization by native gel electrophoresis or chemical cross-linking. The formation of a ternary complex including thymosin β4 should indicate that the actin-binding proteins attach to different sites on actin. Competition would be indicative of binding to identical or overlapping sites on actin or of a negative co-operative linkage between the two binding sites. Competition of thymosin β4 for actin binding was observed in the presence of intact gelsolin or the N-terminal gelsolin fragment, segment 1, indicating that thymosin β4 binds to a site close to or identical with the gelsolin segment 1-binding site. The ternary complex of actin-DNase I-thymosin β4 was obtained only when using the chemically cross-linked actin-thymosin β4 complex, indicating that thymosin β4 is dissociated by the binding of DNase I to actin. It is suggested that the dissociation of thymosin β4 by DNase I binding to actin is caused by negative co-operativity between their spatially separated binding sites on actin. A similar negative co-operativity was observed between DNase I and gelsolin segment 1 binding to actin. The results therefore indicate that the respective binding sites for DNase I and segment 1 on subdomains 1 and 2 of actin are linked in a negative co-operative manner.


2007 ◽  
Vol 179 (6) ◽  
pp. 1247-1259 ◽  
Author(s):  
Jacco van Rheenen ◽  
Xiaoyan Song ◽  
Wies van Roosmalen ◽  
Michael Cammer ◽  
Xiaoming Chen ◽  
...  

Lamellipodial protrusion and directional migration of carcinoma cells towards chemoattractants, such as epidermal growth factor (EGF), depend upon the spatial and temporal regulation of actin cytoskeleton by actin-binding proteins (ABPs). It is generally hypothesized that the activity of many ABPs are temporally and spatially regulated by PIP2; however, this is mainly based on in vitro–binding and structural studies, and generally in vivo evidence is lacking. Here, we provide the first in vivo data that directly visualize the spatial and temporal regulation of cofilin by PIP2 in living cells. We show that EGF induces a rapid loss of PIP2 through PLC activity, resulting in a release and activation of a membrane-bound pool of cofilin. Upon release, we find that cofilin binds to and severs F-actin, which is coincident with actin polymerization and lamellipod formation. Moreover, our data provide evidence for how PLC is involved in the formation of protrusions in breast carcinoma cells during chemotaxis and metastasis towards EGF.


Blood ◽  
2006 ◽  
Vol 107 (10) ◽  
pp. 3868-3875 ◽  
Author(s):  
Harald Schulze ◽  
Manav Korpal ◽  
Jonathan Hurov ◽  
Sang-We Kim ◽  
Jinghang Zhang ◽  
...  

To produce blood platelets, megakaryocytes elaborate proplatelets, accompanied by expansion of membrane surface area and dramatic cytoskeletal rearrangements. The invaginated demarcation membrane system (DMS), a hallmark of mature cells, has been proposed as the source of proplatelet membranes. By direct visualization of labeled DMS, we demonstrate that this is indeed the case. Late in megakaryocyte ontogeny, the DMS gets loaded with PI-4,5-P2, a phospholipid that is confined to plasma membranes in other cells. Appearance of PI-4,5-P2 in the DMS occurs in proximity to PI-5-P-4-kinase α (PIP4Kα), and short hairpin (sh) RNA-mediated loss of PIP4Kα impairs both DMS development and expansion of megakaryocyte size. Thus, PI-4,5-P2 is a marker and possibly essential component of internal membranes. PI-4,5-P2 is known to promote actin polymerization by activating Rho-like GTPases and Wiskott-Aldrich syndrome (WASp) family proteins. Indeed, PI-4,5-P2 in the megakaryocyte DMS associates with filamentous actin. Expression of a dominant-negative N-WASp fragment or pharmacologic inhibition of actin polymerization causes similar arrests in proplatelet formation, acting at a step beyond expansion of the DMS and cell mass. These observations collectively suggest a signaling pathway wherein PI-4,5-P2 might facilitate DMS development and local assembly of actin fibers in preparation for platelet biogenesis.


1984 ◽  
Vol 99 (1) ◽  
pp. 58-70 ◽  
Author(s):  
E J Luna ◽  
C M Goodloe-Holland ◽  
H M Ingalls

In novel, low-speed sedimentation assays, highly purified, sonicated Dictyostelium discoideum plasma membrane fragments bind to F-actin beads (fluorescein-labeled F-actin on antifluorescein IgG-Sephacryl S-1000 beads). Binding was found to be (a) specific, since beads containing bound fluorescein-labeled ovalbumin or beads without bound fluorescein-labeled protein do not bind membranes, (b) saturable at approximately 0.6 microgram of membrane protein per microgram of bead-bound F-actin, (c) rapid with a t1/2 of 4-20 min, and (d) apparently of reasonable affinity since the off rate is too slow to be measured by present techniques. Using low-speed sedimentation assays, we found that sonicated plasma membrane fragments, after extraction with chaotropes, still bind F-actin beads. Heat-denatured membranes, proteolyzed membranes, and D. discoideum lipid vesicles did not bind F-actin beads. These results indicate that integral membrane proteins are responsible for the binding between sonicated membrane fragments and F-actin on beads. This finding agrees with the previous observation that integral proteins mediate interactions between D. discoideum plasma membranes and F-actin in solution (Luna, E.J., V. M. Fowler, J. Swanson, D. Branton, and D. L. Taylor, 1981, J. Cell Biol., 88:396-409). We conclude that low-speed sedimentation assays using F-actin beads are a reliable method for monitoring the associations between F-actin and membranes. Since these assays are relatively quantitative and require only micrograms of membranes and F-actin, they are a significant improvement over other existing techniques for exploring the biochemical details of F-actin-membrane interactions. Using F-actin beads as an affinity column for actin-binding proteins, we show that at least 12 integral polypeptides in D. discoideum plasma membranes bind to F-actin directly or indirectly. At least four of these polypeptides appear to span the membrane and are thus candidates for direct transmembrane links between the cytoskeleton and the cell surface.


Sign in / Sign up

Export Citation Format

Share Document