scholarly journals Nerve growth factor and fibroblast growth factor regulate neurite outgrowth and gene expression in PC12 cells via both protein kinase C- and cAMP-independent mechanisms.

1990 ◽  
Vol 110 (4) ◽  
pp. 1333-1339 ◽  
Author(s):  
D H Damon ◽  
P A D'Amore ◽  
J A Wagner

Nerve growth factor (NGF), acidic fibroblast growth factor (aFGF), and basic fibroblast growth factor (bFGF) promote the survival and differentiation of a variety of peripheral and central neurons. The signal transduction mechanisms that mediate the actions of these factors in neuronal cells are not well understood. We examined the effect of a deficiency in protein kinase C (PKC) and/or cAMP second messenger systems on the actions of NGF, aFGF, and bFGF in the pheochromocytoma (PC12) cell line. Activation of PKC was not required for NGF, aFGF, and bFGF to maximally induce ornithine decarboxylase (ODC), transcription of the early response genes, d2 and d5, or neurite outgrowth. In a PC12 cell mutant that is deficient in cAMP responsiveness (A126-1B2), all three growth factors maximally induced the transcription of d5 and neurite outgrowth, but aFGF and bFGF did not induce significant increases in ODC. NGF and aFGF maximally induced the transcription of d2 in A126-1B2 cells, but bFGF-induced d2 transcription was attenuated. NGF, aFGF, and bFGF maximally induced neurite outgrowth and d5 transcription in A126 cells that were made deficient in PKC. The d2 transcriptional response was substantially reduced in cells deficient in both PKC and cAMP responsiveness. These observations lead us to conclude that (a) cAMP- and PKC-dependent events are, at least in part, causally linked to NGF, aFGF, and bFGF induction of both ODC and transcription of d2 and may control functionally redundant pathways; (b) NGF, aFGF, and bFGF can elicit neurite outgrowth and increase transcription of d2 and d5 in PC12 cells via mechanisms that are independent of both PKC and cAMP; (c) NGF, aFGF, and bFGF can induce ODC in the absence of PKC; and (d) aFGF and bFGF require cAMP responsiveness to induce ODC in PC12 cells.

1991 ◽  
Vol 2 (9) ◽  
pp. 719-726 ◽  
Author(s):  
M Presta ◽  
L Tiberio ◽  
M Rusnati ◽  
P Dell'Era ◽  
G Ragnotti

Basic fibroblast growth factor (bFGF) induces a protein kinase C (PKC)-dependent mitogenic response in transformed fetal bovine aortic endothelial GM 7373 cells. A long-lasting interaction of bFGF with the cell is required to induce cell proliferation. bFGF-treated cells are in fact committed to proliferate only after they have entered the phase S of the cell cycle, 12-14 h after the beginning of bFGF treatment. Before that time, the mitogenic response to bFGF is abolished by 1) removal of extracellular bFGF by suramin, 2) addition of neutralizing anti-bFGF antibodies to the culture medium, 3) inhibition of PKC activity by the protein kinase inhibitor H-7, and 4) down-regulation of PKC by cotreatment with phorbol ester. Thus the requirement for a prolonged interaction of bFGF with the cell reflects the requirement for a prolonged activation of PKC. Similar conclusions can be drawn for the PKC activators 12-O-tetradecanoyl phorbol 13-acetate and 1,2-dioctanoyl-sn-glycerol. The two molecules require 16 and 6 h, respectively, of activation of PKC to induce 50% of maximal cell proliferation. The requirement for a long-lasting activation of PKC appears to be a mechanism for the control of cell proliferation capable of discriminating among transient nonmitogenic stimuli and long-lasting mitogenic stimuli.


Sign in / Sign up

Export Citation Format

Share Document