scholarly journals Effects of the v-mos oncogene on Xenopus development: meiotic induction in oocytes and mitotic arrest in cleaving embryos.

1990 ◽  
Vol 111 (2) ◽  
pp. 533-541 ◽  
Author(s):  
R S Freeman ◽  
J P Kanki ◽  
S M Ballantyne ◽  
K M Pickham ◽  
D J Donoghue

Previous work has demonstrated that the Xenopus protooncogene mosxe can induce the maturation of prophase-arrested Xenopus oocytes. Recently, we showed that mosxe can transform murine NIH3T3 fibroblasts, although it exhibited only 1-2% of the transforming activity of the v-mos oncogene. In this study we have investigated the ability of the v-mos protein to substitute for the mosxe protein in stimulating Xenopus oocytes to complete meiosis. Microinjection of in vitro synthesized RNAs encoding either the mosxe or v-mos proteins stimulates resting oocytes to undergo germinal vesicle breakdown. Microinjection of an antisense oligonucleotide spanning the initiation codon of the mosxe gene blocked progesterone-induced oocyte maturation. When oocytes were microinjected first with the mosxe antisense oligonucleotide, and subsequently with in vitro synthesized v-mos RNA, meiotic maturation was rescued as evidenced by germinal vesicle breakdown. The v-mos protein exhibited in vitro kinase activity when recovered by immunoprecipitation from either microinjected Xenopus oocytes or transfected monkey COS-1 cells; however, in parallel experiments, we were unable to detect in vitro kinase activity associated with the mosxe protein. Microinjection of in vitro synthesized v-mos RNA into cleaving Xenopus embryos resulted in mitotic arrest, demonstrating that the v-mos protein can function like the mosxe protein as a component of cytostatic factor. These results exemplify the apparently conflicting effects of the v-mos protein, namely, its ability to induce maturation of oocytes, its ability to arrest mitotic cleavage of Xenopus embryo, and its ability to transform mammalian fibroblasts.

Reproduction ◽  
2003 ◽  
pp. 645-656 ◽  
Author(s):  
J Ye ◽  
AP Flint ◽  
MR Luck ◽  
KH Campbell

Mitogen-activated protein (MAP) kinase is universally activated during oocyte maturation in all vertebrates studied to date. Its role in the resumption of meiosis and in the activation of maturation-promoting factor (MPF) remains unclear, especially in domestic species such as the pig. This study aimed to clarify the temporal and causal relationships between MAP kinase and MPF during meiotic maturation, particularly during the resumption of meiosis. Pig oocytes were matured synchronously in culture by treatment with cycloheximide. Kinase activities were analysed using a sensitive in vitro double-kinase assay and the specific MAP kinase pathway inhibitor U0126. MAP kinase and MPF were activated simultaneously at the time of germinal vesicle breakdown (GVBD; 6 h after removal of cycloheximide); they reached significant activity at 7 h (P < 0.05). The activities increased in parallel during GVBD (6-10 h) and peaked when the oocytes entered metaphase I (MI; 10 h). Whereas MAP kinase remained stable at peak activity thereafter, MPF activity significantly declined during the MI-MII transition (16-20 h) but increased to a second peak at MII (22 h). MAP kinase activity in denuded and cumulus-cell enclosed oocytes was completely inhibited by 20 and 80 mmicro mol U0126 l(-1), respectively. Oocytes without detectable MAP kinase activity underwent normal GVBD in terms of nuclear morphology and timing, although later meiotic stages were abnormal. The kinetics of MPF activity during GVBD were unaffected by U0126. This study has demonstrated that MAP kinase is activated simultaneously with MPF at GVBD, but that its activation is not essential for the activation of MPF nor for the resumption of the first meiosis in pig oocytes.


1991 ◽  
Vol 11 (2) ◽  
pp. 604-610 ◽  
Author(s):  
N Yew ◽  
M Oskarsson ◽  
I Daar ◽  
D G Blair ◽  
G F Vande Woude

The mos proto-oncogenes from different vertebrate species transform mouse NIH 3T3 cells with markedly different efficiencies. v-mos, mouse (c-mosmu), and chicken (c-mosch) mos transform NIH 3T3 cells 10- to 100-fold more efficiently than do human (c-moshu) and Xenopus (c-mosxc) mos. The mos genes with the highest transforming activity efficiently induce maturation in Xenopus oocytes and mimic cytostatic factor (CSF) by causing mitotic cleavage arrest in embryos. Chimeric v-mos/c-moshu proteins that had high transforming efficiencies in NIH 3T3 cells were also effective in the induction of oocyte maturation and CSF cleavage arrest. We measured the in vitro autophosphorylation activities of the different mos proteins and found that the levels of kinase activity of v-mos, c-mosmu, and c-mosch were much higher than that of c-mosxc. These data indicate that mos gene transforming efficiency and the ability to induce oocyte maturation or mimic CSF activity are correlated with in vitro autophosphorylation activity and suggest that the mos protein plays a similar role in transformed cells and normal oocytes.


1991 ◽  
Vol 11 (3) ◽  
pp. 1713-1717 ◽  
Author(s):  
R S Freeman ◽  
S M Ballantyne ◽  
D J Donoghue

We have investigated the relationship between Xenopus laevis c-mos (mosXe) and the cyclin B component of maturation-promoting factor. Microinjection of Xenopus oocytes with in vitro-synthesized RNAs encoding Xenopus cyclin B1 or cyclin B2 induces the progression of meiosis, characterized by germinal vesicle breakdown (GVBD). By preinjecting oocytes with a mosXe-specific antisense oligonucleotide, we show that GVBD induced by cyclin B does not require expression of the mosXe protein. GVBD induced by cyclin B proceeds significantly faster than GVBD induced by progesterone or MosXe. However, coinjection of RNAs encoding cyclin B1 or cyclin B2 with mosXe RNA results in a 2.5- to 3-fold acceleration in GVBD relative to that induced by cyclin B alone. This acceleration of GVBD does not correlate with changes in the level of cyclin B1 and cyclin B2 phosphorylation.


1991 ◽  
Vol 11 (3) ◽  
pp. 1713-1717
Author(s):  
R S Freeman ◽  
S M Ballantyne ◽  
D J Donoghue

We have investigated the relationship between Xenopus laevis c-mos (mosXe) and the cyclin B component of maturation-promoting factor. Microinjection of Xenopus oocytes with in vitro-synthesized RNAs encoding Xenopus cyclin B1 or cyclin B2 induces the progression of meiosis, characterized by germinal vesicle breakdown (GVBD). By preinjecting oocytes with a mosXe-specific antisense oligonucleotide, we show that GVBD induced by cyclin B does not require expression of the mosXe protein. GVBD induced by cyclin B proceeds significantly faster than GVBD induced by progesterone or MosXe. However, coinjection of RNAs encoding cyclin B1 or cyclin B2 with mosXe RNA results in a 2.5- to 3-fold acceleration in GVBD relative to that induced by cyclin B alone. This acceleration of GVBD does not correlate with changes in the level of cyclin B1 and cyclin B2 phosphorylation.


1991 ◽  
Vol 11 (2) ◽  
pp. 604-610
Author(s):  
N Yew ◽  
M Oskarsson ◽  
I Daar ◽  
D G Blair ◽  
G F Vande Woude

The mos proto-oncogenes from different vertebrate species transform mouse NIH 3T3 cells with markedly different efficiencies. v-mos, mouse (c-mosmu), and chicken (c-mosch) mos transform NIH 3T3 cells 10- to 100-fold more efficiently than do human (c-moshu) and Xenopus (c-mosxc) mos. The mos genes with the highest transforming activity efficiently induce maturation in Xenopus oocytes and mimic cytostatic factor (CSF) by causing mitotic cleavage arrest in embryos. Chimeric v-mos/c-moshu proteins that had high transforming efficiencies in NIH 3T3 cells were also effective in the induction of oocyte maturation and CSF cleavage arrest. We measured the in vitro autophosphorylation activities of the different mos proteins and found that the levels of kinase activity of v-mos, c-mosmu, and c-mosch were much higher than that of c-mosxc. These data indicate that mos gene transforming efficiency and the ability to induce oocyte maturation or mimic CSF activity are correlated with in vitro autophosphorylation activity and suggest that the mos protein plays a similar role in transformed cells and normal oocytes.


1992 ◽  
Vol 12 (7) ◽  
pp. 3192-3203 ◽  
Author(s):  
K M Pickham ◽  
A N Meyer ◽  
J Li ◽  
D J Donoghue

The p34cdc2 protein kinase is a component of maturation-promoting factor, the master regulator of the cell cycle in all eukaryotes. The activity of p34cdc2 is itself tightly regulated by phosphorylation and dephosphorylation. Predicted regulatory phosphorylation sites of Xenopus p34cdc2 were mutated in vitro, and in vitro-transcribed RNAs were injected into Xenopus oocytes. The cdc2 single mutants Thr-14----Ala and Tyr-15----Phe did not induce germinal vesicle breakdown (BVBD) upon microinjection into oocytes. In contrast, the cdc2 double mutant Ala-14/Phe-15 did induce GVBD. Both the Ala-14 and Ala-14/Phe-15p34cdc2 mutants were shown to coimmunoprecipitate cyclin B1 and to phosphorylate histone H1 in immune complex kinase assays. Microinjection of antisense oligonucleotides to c-mosXe was used to demonstrate the role of mos protein synthesis in the induction of GVBD by the Ala-14/Phe-15 cdc2 mutant. Thr-161 was also mutated. p34cdc2 single mutants Ala-161 and Glu-161 and triple mutants Ala-14/Phe-15/Ala-161 and Ala-14/Phe-15/Glu-161 failed to induce GVBD in oocytes and showed a decreased binding to cyclin B1 in coimmunoprecipitations. Each of the cdc2 mutants was also assayed by coinjection with cyclin B1 or c-mosXe RNA into oocytes. Several of the cdc2 mutants were found to affect the kinetics of cyclin B1 and/or mos-induced GVBD upon coinjection, although none affected the rate of progesterone-induced maturation. We demonstrate here the significance of Thr-14, Tyr-15, and Thr-161 of p34cdc2 in Xenopus oocyte maturation. In addition, these results suggest a regulatory role for mosXe in induction of oocyte maturation by the cdc2 mutant Ala-14/Phe-15.


2003 ◽  
Vol 19 (3-4) ◽  
pp. 1-8 ◽  
Author(s):  
Tatjana Smiljakovic ◽  
Melo Sterza ◽  
M. Kubelka ◽  
Z. Vohnikova ◽  
W. Tomek

Bovine oocytes are arrested in the germinal vesicle stage (GV stage)and mature spontaneously when they are removed from their follicles and transferred to a suitable culture medium. This process, known as meiotic maturation is characterized among others, by germinal vesicle breakdown followed by metaphase I (MI) stage and further development to metaphase II (MII), where they become arrested again. During GVBD to MI transition, the overall protein synthesis reaches the highest level and it rapidly declines in MII. We have previously shown that transcription completely declines during meiotic maturation. Therefore we suppose that gene expression is exclusively regulated on translational level at this stage of development. This means that mRNAs, which were stored in repressed form during oocyte growth, were actively translated during meiotic maturation. Therefore we have investigated specific regulators of translation, namely the eukaryotic initiation factor of translation eIF4E (cap binding protein) and a specific repressor of eIF4E function, the 4E-binding protein 4E-BP1. Furthermore, we have elucidated pathways, which lead to eIF4E and 4E-BP1 phosphorylation by using specific M-phase kinase inhibitors, and we compare these results with transcription and cytoplasmic polyadenylation events during the course of meiotic maturation. The detailed knowledge of such regulatory processes can help to improve in vitro bio-techniques and to estimate the risk of these techniques.


2015 ◽  
Vol 27 (7) ◽  
pp. 1082 ◽  
Author(s):  
Maricy Apparicio ◽  
Giuliano Q. Mostachio ◽  
Tathiana F. Motheo ◽  
Aracelle E. Alves ◽  
Luciana Padilha ◽  
...  

The aim of this study was to evaluate the influence of different bi-phasic systems with gonadotrophins and steroids on in vitro maturation rates of oocytes obtained from bitches at different reproductive stages (follicular, luteal, anoestrous). In System A (control) oocytes were matured for 72 h in base medium (BM) with 10 IU mL–1 human chorionic gonadotrophin (hCG), 1 μg mL–1 progesterone (P4) and 1 μg mL–1 oestradiol (E2); in bi-phasic System B oocytes were matured for 48 h in BM with hCG and for 24 h in BM with P4; in bi-phasic System C oocytes were matured for 48 h in BM with hCG, P4 and E2, and for 24 h in BM with P4; in System D, oocytes were cultured in BM without hormonal supplementation. Data were analysed by ANOVA. There was a positive effect of the bi-phasic systems on germinal vesicle breakdown, metaphase I and metaphase II rates, irrespective of reproductive status (P < 0.05). Bi-phasic systems were also beneficial for cortical granule distribution (an indication of cytoplasmic maturation) and its relationship to nuclear status: 74.5% of the oocytes cultured in System B and 85.4% of those cultured in System C presented both nuclear and cytoplasmic maturation (P < 0.001). The stage of the oestrous cycle did not influence maturation rates.


1976 ◽  
Vol 22 (3) ◽  
pp. 531-545
Author(s):  
P.M. Wassarman ◽  
W.J. Josefowicz ◽  
G.E. Letourneau

In vitro studies of meiotic maturation of mouse oocytes have been carried out in the presence of several drugs. The individual steps of nuclear progression, including dissolution of the nuclear (germinal vesicle) membrane, condensation of dictyate chromatin into compact bivalents, formation of the first metaphase spindle, and extrusion of the first polar body, are each susceptible to one or more of these drugs. Germinal vesicle breakdown, the initial morphological feature characteristic of meiotic maturation, is inhibited by dibutyryl cyclic AMP. However, even in the presence of dibutyryl cyclic AMP, the nuclear membrane becomes extremely convoluted and condensation of chromatin is initiated but aborts at a stage short of compact bivalents. Germinal vesicle breakdown and chromatin condensation take place in an apparently normal manner in the presence of puromycin, Colcemid, or cytochalasin B. Nuclear progression is blocked at the circular bivalent stage when oocytes are cultured continuously in the presence of puromycin or Colcemid, whereas oocytes cultured in the presence of cytochalasin B proceed to the first meiotic metaphase, form an apparently normal spindle, and arrest. Emission of a polar body is inhibited by all of these drugs. The inhibitory effects of these drugs on meiotic maturation are reversible to varying degrees dependent upon the duration of exposure to the drug and upon the nature of the drug. These studies suggest that dissolution of the mouse oocyte's germinal vesicle and condensation of chromatin are not dependent upon concomitant protein synthesis or upon microtubules. On the other hand, the complete condensation of chromatin into compact bivalents apparently requires breakdown of the germinal vesicle. Failure of homologous chromosomes to separate after normal alignment on the meiotic spindle in the presence of cytochalasin B suggest that microfilaments may be involved in nuclear progression at this stage of maturation. Cytokinesis, in the form of polar body formation, is blocked when any one of the earlier events of maturation fails to take place.


1992 ◽  
Vol 12 (7) ◽  
pp. 3192-3203
Author(s):  
K M Pickham ◽  
A N Meyer ◽  
J Li ◽  
D J Donoghue

The p34cdc2 protein kinase is a component of maturation-promoting factor, the master regulator of the cell cycle in all eukaryotes. The activity of p34cdc2 is itself tightly regulated by phosphorylation and dephosphorylation. Predicted regulatory phosphorylation sites of Xenopus p34cdc2 were mutated in vitro, and in vitro-transcribed RNAs were injected into Xenopus oocytes. The cdc2 single mutants Thr-14----Ala and Tyr-15----Phe did not induce germinal vesicle breakdown (BVBD) upon microinjection into oocytes. In contrast, the cdc2 double mutant Ala-14/Phe-15 did induce GVBD. Both the Ala-14 and Ala-14/Phe-15p34cdc2 mutants were shown to coimmunoprecipitate cyclin B1 and to phosphorylate histone H1 in immune complex kinase assays. Microinjection of antisense oligonucleotides to c-mosXe was used to demonstrate the role of mos protein synthesis in the induction of GVBD by the Ala-14/Phe-15 cdc2 mutant. Thr-161 was also mutated. p34cdc2 single mutants Ala-161 and Glu-161 and triple mutants Ala-14/Phe-15/Ala-161 and Ala-14/Phe-15/Glu-161 failed to induce GVBD in oocytes and showed a decreased binding to cyclin B1 in coimmunoprecipitations. Each of the cdc2 mutants was also assayed by coinjection with cyclin B1 or c-mosXe RNA into oocytes. Several of the cdc2 mutants were found to affect the kinetics of cyclin B1 and/or mos-induced GVBD upon coinjection, although none affected the rate of progesterone-induced maturation. We demonstrate here the significance of Thr-14, Tyr-15, and Thr-161 of p34cdc2 in Xenopus oocyte maturation. In addition, these results suggest a regulatory role for mosXe in induction of oocyte maturation by the cdc2 mutant Ala-14/Phe-15.


Sign in / Sign up

Export Citation Format

Share Document