scholarly journals Meiotic induction by Xenopus cyclin B is accelerated by coexpression with mosXe.

1991 ◽  
Vol 11 (3) ◽  
pp. 1713-1717 ◽  
Author(s):  
R S Freeman ◽  
S M Ballantyne ◽  
D J Donoghue

We have investigated the relationship between Xenopus laevis c-mos (mosXe) and the cyclin B component of maturation-promoting factor. Microinjection of Xenopus oocytes with in vitro-synthesized RNAs encoding Xenopus cyclin B1 or cyclin B2 induces the progression of meiosis, characterized by germinal vesicle breakdown (GVBD). By preinjecting oocytes with a mosXe-specific antisense oligonucleotide, we show that GVBD induced by cyclin B does not require expression of the mosXe protein. GVBD induced by cyclin B proceeds significantly faster than GVBD induced by progesterone or MosXe. However, coinjection of RNAs encoding cyclin B1 or cyclin B2 with mosXe RNA results in a 2.5- to 3-fold acceleration in GVBD relative to that induced by cyclin B alone. This acceleration of GVBD does not correlate with changes in the level of cyclin B1 and cyclin B2 phosphorylation.

1991 ◽  
Vol 11 (3) ◽  
pp. 1713-1717
Author(s):  
R S Freeman ◽  
S M Ballantyne ◽  
D J Donoghue

We have investigated the relationship between Xenopus laevis c-mos (mosXe) and the cyclin B component of maturation-promoting factor. Microinjection of Xenopus oocytes with in vitro-synthesized RNAs encoding Xenopus cyclin B1 or cyclin B2 induces the progression of meiosis, characterized by germinal vesicle breakdown (GVBD). By preinjecting oocytes with a mosXe-specific antisense oligonucleotide, we show that GVBD induced by cyclin B does not require expression of the mosXe protein. GVBD induced by cyclin B proceeds significantly faster than GVBD induced by progesterone or MosXe. However, coinjection of RNAs encoding cyclin B1 or cyclin B2 with mosXe RNA results in a 2.5- to 3-fold acceleration in GVBD relative to that induced by cyclin B alone. This acceleration of GVBD does not correlate with changes in the level of cyclin B1 and cyclin B2 phosphorylation.


1992 ◽  
Vol 12 (7) ◽  
pp. 3192-3203 ◽  
Author(s):  
K M Pickham ◽  
A N Meyer ◽  
J Li ◽  
D J Donoghue

The p34cdc2 protein kinase is a component of maturation-promoting factor, the master regulator of the cell cycle in all eukaryotes. The activity of p34cdc2 is itself tightly regulated by phosphorylation and dephosphorylation. Predicted regulatory phosphorylation sites of Xenopus p34cdc2 were mutated in vitro, and in vitro-transcribed RNAs were injected into Xenopus oocytes. The cdc2 single mutants Thr-14----Ala and Tyr-15----Phe did not induce germinal vesicle breakdown (BVBD) upon microinjection into oocytes. In contrast, the cdc2 double mutant Ala-14/Phe-15 did induce GVBD. Both the Ala-14 and Ala-14/Phe-15p34cdc2 mutants were shown to coimmunoprecipitate cyclin B1 and to phosphorylate histone H1 in immune complex kinase assays. Microinjection of antisense oligonucleotides to c-mosXe was used to demonstrate the role of mos protein synthesis in the induction of GVBD by the Ala-14/Phe-15 cdc2 mutant. Thr-161 was also mutated. p34cdc2 single mutants Ala-161 and Glu-161 and triple mutants Ala-14/Phe-15/Ala-161 and Ala-14/Phe-15/Glu-161 failed to induce GVBD in oocytes and showed a decreased binding to cyclin B1 in coimmunoprecipitations. Each of the cdc2 mutants was also assayed by coinjection with cyclin B1 or c-mosXe RNA into oocytes. Several of the cdc2 mutants were found to affect the kinetics of cyclin B1 and/or mos-induced GVBD upon coinjection, although none affected the rate of progesterone-induced maturation. We demonstrate here the significance of Thr-14, Tyr-15, and Thr-161 of p34cdc2 in Xenopus oocyte maturation. In addition, these results suggest a regulatory role for mosXe in induction of oocyte maturation by the cdc2 mutant Ala-14/Phe-15.


1990 ◽  
Vol 111 (2) ◽  
pp. 533-541 ◽  
Author(s):  
R S Freeman ◽  
J P Kanki ◽  
S M Ballantyne ◽  
K M Pickham ◽  
D J Donoghue

Previous work has demonstrated that the Xenopus protooncogene mosxe can induce the maturation of prophase-arrested Xenopus oocytes. Recently, we showed that mosxe can transform murine NIH3T3 fibroblasts, although it exhibited only 1-2% of the transforming activity of the v-mos oncogene. In this study we have investigated the ability of the v-mos protein to substitute for the mosxe protein in stimulating Xenopus oocytes to complete meiosis. Microinjection of in vitro synthesized RNAs encoding either the mosxe or v-mos proteins stimulates resting oocytes to undergo germinal vesicle breakdown. Microinjection of an antisense oligonucleotide spanning the initiation codon of the mosxe gene blocked progesterone-induced oocyte maturation. When oocytes were microinjected first with the mosxe antisense oligonucleotide, and subsequently with in vitro synthesized v-mos RNA, meiotic maturation was rescued as evidenced by germinal vesicle breakdown. The v-mos protein exhibited in vitro kinase activity when recovered by immunoprecipitation from either microinjected Xenopus oocytes or transfected monkey COS-1 cells; however, in parallel experiments, we were unable to detect in vitro kinase activity associated with the mosxe protein. Microinjection of in vitro synthesized v-mos RNA into cleaving Xenopus embryos resulted in mitotic arrest, demonstrating that the v-mos protein can function like the mosxe protein as a component of cytostatic factor. These results exemplify the apparently conflicting effects of the v-mos protein, namely, its ability to induce maturation of oocytes, its ability to arrest mitotic cleavage of Xenopus embryo, and its ability to transform mammalian fibroblasts.


1999 ◽  
Vol 10 (10) ◽  
pp. 3279-3288 ◽  
Author(s):  
Marie Frank-Vaillant ◽  
Catherine Jessus ◽  
René Ozon ◽  
James L. Maller ◽  
Olivier Haccard

Progesterone-induced meiotic maturation of Xenopusoocytes requires the synthesis of new proteins, such as Mos and cyclin B. Synthesis of Mos is thought to be necessary and sufficient for meiotic maturation; however, it has recently been proposed that newly synthesized proteins binding to p34cdc2could be involved in a signaling pathway that triggers the activation of maturation-promoting factor. We focused our attention on cyclin B proteins because they are synthesized in response to progesterone, they bind to p34cdc2, and their microinjection into resting oocytes induces meiotic maturation. We investigated cyclin B accumulation in response to progesterone in the absence of maturation-promoting factor–induced feedback. We report here that the cdk inhibitor p21cip1, when microinjected into immatureXenopus oocytes, blocks germinal vesicle breakdown induced by progesterone, by maturation-promoting factor transfer, or by injection of okadaic acid. After microinjection of p21cip1, progesterone fails to induce the activation of MAPK or p34cdc2, and Mos does not accumulate. In contrast, the level of cyclin B1 increases normally in a manner dependent on down-regulation of cAMP-dependent protein kinase but independent of cap-ribose methylation of mRNA.


1992 ◽  
Vol 12 (7) ◽  
pp. 3192-3203
Author(s):  
K M Pickham ◽  
A N Meyer ◽  
J Li ◽  
D J Donoghue

The p34cdc2 protein kinase is a component of maturation-promoting factor, the master regulator of the cell cycle in all eukaryotes. The activity of p34cdc2 is itself tightly regulated by phosphorylation and dephosphorylation. Predicted regulatory phosphorylation sites of Xenopus p34cdc2 were mutated in vitro, and in vitro-transcribed RNAs were injected into Xenopus oocytes. The cdc2 single mutants Thr-14----Ala and Tyr-15----Phe did not induce germinal vesicle breakdown (BVBD) upon microinjection into oocytes. In contrast, the cdc2 double mutant Ala-14/Phe-15 did induce GVBD. Both the Ala-14 and Ala-14/Phe-15p34cdc2 mutants were shown to coimmunoprecipitate cyclin B1 and to phosphorylate histone H1 in immune complex kinase assays. Microinjection of antisense oligonucleotides to c-mosXe was used to demonstrate the role of mos protein synthesis in the induction of GVBD by the Ala-14/Phe-15 cdc2 mutant. Thr-161 was also mutated. p34cdc2 single mutants Ala-161 and Glu-161 and triple mutants Ala-14/Phe-15/Ala-161 and Ala-14/Phe-15/Glu-161 failed to induce GVBD in oocytes and showed a decreased binding to cyclin B1 in coimmunoprecipitations. Each of the cdc2 mutants was also assayed by coinjection with cyclin B1 or c-mosXe RNA into oocytes. Several of the cdc2 mutants were found to affect the kinetics of cyclin B1 and/or mos-induced GVBD upon coinjection, although none affected the rate of progesterone-induced maturation. We demonstrate here the significance of Thr-14, Tyr-15, and Thr-161 of p34cdc2 in Xenopus oocyte maturation. In addition, these results suggest a regulatory role for mosXe in induction of oocyte maturation by the cdc2 mutant Ala-14/Phe-15.


Zygote ◽  
2000 ◽  
Vol 8 (1) ◽  
pp. 3-14 ◽  
Author(s):  
Stéphane Flament ◽  
Jean-François Bodart ◽  
Marc Bertout ◽  
Edith Browaeys ◽  
Arlette Rousseau ◽  
...  

The effects of the new cyclin-dependent kinase inhibitors, roscovitine and olomoucine, on oocytes and eggs of Xenopus laevis were investigated and compared with those of 6-dimethylamino purine (6-DMAP). The inhibitory properties of 6-DMAP, olomoucine and roscovitine towards p34cdc2-cyclin B isolated from Xenopus eggs revealed K-IC50 values of 300, 40 and 10 μM respectively. The three compounds inhibited progesterone-induced maturation with M-IC50 values of 200, 100 and 20 μM. These values were consistent with the K-IC50 values but the ratio M-IC50/K-IC50 was higher for roscovitine and olomoucine than for 6-DMAP. The disappearance of spindle and condensed chromosomes without pronucleus formation was observed when 1 mM 6-DMAP was applied for 4 h at germinal vesicle breakdown or at metaphase II, whereas no effect was observed using 1 mM olomoucine or 50 μM roscovitine. Changes in the electrophoretic mobility of p34cdc2 and erk2 were observed only in homogenates of matured oocytes or eggs exposed for 4 h to 1 mM 6-DMAP. When the drugs were microinjected into matured oocytes, olomoucine (100 μM) and roscovitine (50 μM) induced pronucleus formation more efficiently than did 6-DMAP (100 μM). Taken together, these results demonstrate that Xenopus oocytes possess a lower permeability to olomoucine and roscovitine and that these new compounds are suitable for in vivo studies after germinal vesicle breakdown provided they are microinjected.


1985 ◽  
Vol 100 (5) ◽  
pp. 1637-1640 ◽  
Author(s):  
R A Sorensen ◽  
M S Cyert ◽  
R A Pedersen

Cytoplasmic extracts of meiotically mature mouse oocytes were injected into immature Xenopus laevis oocytes, which underwent germinal vesicle breakdown within 2 h. Germinal vesicle breakdown was not inhibited by incubation of the Xenopus oocytes in cycloheximide (20 micrograms/ml). Identically prepared extracts of meiotically immature mouse oocytes, arrested at the germinal vesicle stage by dibutyryl cyclic AMP (100 micrograms/ml), did not induce germinal vesicle breakdown in Xenopus oocytes. The results show that maturation-promoting factor activity appears during the course of oocyte maturation in the mouse.


Zygote ◽  
2015 ◽  
Vol 24 (2) ◽  
pp. 252-258 ◽  
Author(s):  
Ana Josefina Arias Torres ◽  
Marta Inés Bühler ◽  
Liliana Isabel Zelarayán

SummaryIn this work we showed the relationship between seasonal periods and the response of R. arenarum follicles and oocytes to different steroids. Using in vitro germinal vesicle breakdown (GVBD) assays, we demonstrated that P4 is the main steroid capable of inducing maturation in R. arenarum oocytes and follicles. In the second part of this work we showed that androgens can activate pre-maturation promoting factors (pre-MPFs) such as P4, by cytoplasm microinjection experiments. The results indicated that the steroids assayed induced oocyte and follicle maturation in a dose- and time-dependent manner. In oocytes, P4 was the most efficient steroid as a maturation inducer (EC50 of the reproductive period, 6 nM, EC50 of the non-reproductive period ≅ 30 nM). Androgens (DHEA, dehydroepiandrosterone; T, testosterone; and AD, androstenedione) were less efficient maturation inducers than P4 (EC50 reproductive period ≅ 50, 120 and 600 nM respectively). Similar results were obtained with intact follicles in both seasonal periods. Although the response of follicles to the different androgens was variable, in no case was it above the above the response induced by P4. Independently of the season, oocytes and follicles incubated in P4, P5 and T underwent GVBD after 6–10 h while oocytes and follicles incubated in DHEA and AD matured more slowly. Furthermore, we demonstrated that microinjection of mature cytoplasm from androgen-treated oocytes is sufficient to promote GVBD in immature recipient oocytes (DHEA, 57 ± 12%; AD, 60 ± 8%; T, 56 ± 13%). Thus, androgens such as DHEA, T and AD are as competent as P4 to activate pre-MPF.


1984 ◽  
Vol 101 (1) ◽  
pp. 7-12 ◽  
Author(s):  
C. Le Goascogne ◽  
S. Hirai ◽  
E.-E. Baulieu

ABSTRACT Progesterone is the hormone that reinitiates the meiotic division of amphibian oocytes and insulin and insulin-like growth factors are also active on defolliculated oocytes in vitro. We have studied Xenopus laevis oocytes (stage 5–6) of different hormonal sensitivities, obtained from unstimulated and from human chorionic gonadotrophin-stimulated females. Some oocytes from unstimulated females were also precultured with a subthreshold level of progesterone. A dose-dependent potentiating effect of the action of progesterone was observed with insulin, and this was particularly remarkable in low-sensitivity oocytes. Since in the presence of insulin, the optimally effective concentration of progesterone was much reduced (as an example from 1 μmol/l to 50 nmol/l), it is suggested that an insulin-like growth factor may play a physiological role in the reinitiation of meiosis in ovaries. J. Endocr. (1984) 101, 7–12


Sign in / Sign up

Export Citation Format

Share Document