scholarly journals The 54-kD protein of signal recognition particle contains a methionine-rich RNA binding domain.

1990 ◽  
Vol 111 (5) ◽  
pp. 1793-1802 ◽  
Author(s):  
K Römisch ◽  
J Webb ◽  
K Lingelbach ◽  
H Gausepohl ◽  
B Dobberstein

Signal recognition particle (SRP) plays the key role in targeting secretory proteins to the membrane of the endoplasmic reticulum (Walter, P., and V. R. Lingappa. 1986. Annu. Rev. Cell Biol. 2:499-516). It consists of SRP7S RNA and six proteins. The 54-kD protein of SRP (SRP54) recognizes the signal sequence of nascent polypeptides. The 19-kD protein of SRP (SRP19) binds to SRP7S RNA directly and is required for the binding of SRP54 to the particle. We used deletion mutants of SRP19 and SRP54 and an in vitro assembly assay in the presence of SRP7S RNA to define the regions in both proteins which are required to form a ribonucleoprotein particle. Deletion of the 21 COOH-terminal amino acids of SRP19 does not interfere with its binding to SRP7S RNA. Further deletions abolish SRP19 binding to SRP7S RNA. The COOH-terminal 207 amino acids of SRP54 (M domain) were found to be necessary and sufficient for binding to the SRP19/7S RNA complex in vitro. Limited protease digestion of purified SRP confirmed our results for SRP54 from the in vitro binding assay. The SRP54M domain could also bind to Escherichia coli 4.5S RNA that is homologous to part of SRP7S RNA. We suggest that the methionine-rich COOH terminus of SRP54 is a RNA binding domain and that SRP19 serves to establish a binding site for SRP54 on the SRP7S RNA.

2003 ◽  
Vol 23 (12) ◽  
pp. 4083-4093 ◽  
Author(s):  
Wencheng Liu ◽  
Jeremy Seto ◽  
Etienne Sibille ◽  
Miklos Toth

ABSTRACT A deficit in the Jerky protein in mice causes recurrent seizures reminiscent of temporal lobe epilepsy. Jerky is present in mRNA particles in neurons. We show that the N-terminal 168 amino acids of Jerky are necessary and sufficient for mRNA binding. The binding domain is similar to the two tandemly arranged homeodomain-like helix-turn-helix DNA binding motifs of centromere binding protein B. The putative helix-turn-helix motifs of Jerky can also bind double-stranded DNA and represent a novel mammalian RNA/DNA binding domain. Microarray analysis identified mRNAs encoding proteins involved in ribosome assembly and cellular stress response that specifically bound to the RNA binding domain of Jerky both in vitro and in vivo. These data suggest that epileptogenesis in Jerky-deficient mice most likely involves pathways associated with ribosome biogenesis and neuronal survival and/or apoptosis.


1991 ◽  
Vol 113 (2) ◽  
pp. 229-233 ◽  
Author(s):  
S High ◽  
B Dobberstein

The signal sequence of nascent preprolactin interacts with the 54-kD protein of the signal recognition particle (SRP54). To identify the domain or site on SRP54 that interacts with the signal sequence we used a photocross-linking approach followed by limited proteolysis and immunoprecipitation using anti-peptide antibodies specific for defined regions of SRP54. We found that the previously identified methionine-rich RNA-binding domain of SRP54 (SRP54M domain) also interacts with the signal sequence. The smallest fragment that was found to be crosslinked to the signal sequence comprised the COOH-terminal 6-kD segment of the SRP54M domain. No cross-link to the putative GTP-binding domain of SRP54 (SRP54G domain) was found. Proteolytic cleavage between the SRP54M domain and SRP54G domain did not impair the subsequent interaction between the signal sequence and the SRP54M domain. Our results show that both the RNA binding and signal sequence binding functions of SRP54 are performed by the SRP54M domain.


1991 ◽  
Vol 69 (9) ◽  
pp. 649-654 ◽  
Author(s):  
Christian Zwieb

To identify some of the determinants in the 19-kilodalton protein of signal recognition particle (SRP19) for binding to signal recognition particle RNA, two mutant derivatives of the SRP19 were constructed, lacking 14 and 24 C-terminal amino acids. Polypeptides were transcribed and translated in vitro and tested for their ability to bind to signal recognition particle RNA by retention of protein–RNA complexes on DEAE–Sepharose. Both mutant polypeptides form complexes with the RNA, demonstrating that the 24 C-terminal amino acids, which include a lysine-rich sequence at positions 136–144, are dispensable. A third mutant polypeptide, in which eight additional amino acids were removed by oligonucleotide-directed digestion of the mRNA, was unable to bind. The amino acids in the sequence PKLKTRTQ correspond to positions 113–120; they are suggested to be involved in interaction with signal recognition particle RNA.Key words: signal recognition particle, site-directed mutagenesis, protein–RNA binding.


2006 ◽  
Vol 26 (6) ◽  
pp. 2029-2036 ◽  
Author(s):  
Catherine M. O'Connor ◽  
Kathleen Collins

ABSTRACT Telomerase reverse transcriptase (TERT) and telomerase RNA (TER) assemble as part of a holoenzyme that synthesizes telomeric repeats at chromosome ends. Genetic approaches have identified proteins that are required for in vivo association of TERT and TER, including the Tetrahymena telomerase holoenzyme protein p65. Here, we use quantitative assays to define the mechanisms underlying p65 function in holoenzyme biogenesis. We demonstrate that four modules of p65 contribute affinity for TER, including a C-terminal domain that recognizes the conserved dinucleotide bulge of central stem IV. This C-terminal domain is necessary and sufficient for p65's function in enhancing the recruitment of TERT to TER. Finally, we show that p65 and TERT assemble on TER with hierarchical rather than cooperative binding. These findings elucidate an extensive network of p65-TER recognition specificity and define a novel p65 RNA binding domain that initiates telomerase holoenyzme biogenesis.


1989 ◽  
Vol 109 (5) ◽  
pp. 2033-2043 ◽  
Author(s):  
U C Krieg ◽  
A E Johnson ◽  
P Walter

The molecular environment of secretory proteins during translocation across the ER membrane was examined by photocross-linking. Nascent preprolactin chains of various lengths, synthesized by in vitro translation of truncated messenger RNAs in the presence of N epsilon-(5-azido-2-nitrobenzoyl)-Lys-tRNA, signal recognition particle, and microsomal membranes, were used to position photoreactive probes at various locations within the membrane. Upon photolysis, each nascent chain species was cross-linked to an integral membrane glycoprotein with a deduced mass of 39 kD (mp39) via photoreactive lysines located in either the signal sequence or the mature prolactin sequence. Thus, different portions of the nascent preprolactin chain are in close proximity to the same membrane protein during the course of translocation, and mp39 therefore appears to be part of the translocon, the specific site of protein translocation across the ER membrane. The similarity of the molecular and cross-linking properties of mp39 and the glyco-protein previously identified as a signal sequence receptor (Wiedmann, M., T. V. Kurzchalia, E. Hartmann, and T. A. Rapoport. 1987. Nature [Lond.]. 328: 830-833) suggests that these two proteins may be identical. Our data indicate, however, that mp39 does not (or not only) function as a signal sequence receptor, but rather may be part of a putative translocation tunnel.


1989 ◽  
Vol 109 (6) ◽  
pp. 2617-2622 ◽  
Author(s):  
S L Wolin ◽  
P Walter

Signal recognition particle (SRP) is a ribonucleoprotein that functions in the targeting of ribosomes synthesizing presecretory proteins to the ER. SRP binds to the signal sequence as it emerges from the ribosome, and in wheat germ extracts, arrests further elongation. The translation arrest is released when SRP interacts with its receptor on the ER membrane. We show that the delay of elongation mediated by SRP is not unique to wheat germ translation extracts. Addition of mammalian SRP to reticulocyte lysates resulted in a delay of preprolactin synthesis due to increased ribosome pausing at specific sites on preprolactin mRNA. Addition of canine pancreatic microsomal membranes to reticulocyte lysates resulted in an acceleration of preprolactin synthesis, suggesting that the endogenous SRP present in the reticulocyte lysate also delays synthesis of secretory proteins.


1990 ◽  
Vol 10 (2) ◽  
pp. 777-784
Author(s):  
K Strub ◽  
P Walter

The signal recognition particle (SRP), a cytoplasmic ribonucleoprotein, plays an essential role in targeting secretory proteins to the rough endoplasmic reticulum membrane. In addition to the targeting function, SRP contains an elongation arrest or pausing function. This function is carried out by the Alu domain, which consists of two proteins, SRP9 and SRP14, and the portion of SRP (7SL) RNA which is homologous to the Alu family of repetitive sequences. To study the assembly pathway of the components in the Alu domain, we have isolated a cDNA clone of SRP9, in addition to a previously obtained cDNA clone of SRP14. We show that neither SRP9 nor SRP14 alone interacts specifically with SRP RNA. Rather, the presence of both proteins is required for the formation of a stable RNA-protein complex. Furthermore, heterodimerization of SRP9 and SRP14 occurs in the absence of SRP RNA. Since a partially reconstituted SRP lacking SRP9 and SRP14 [SRP(-9/14)] is deficient in the elongation arrest function, it follows from our results that both proteins are required to assemble a functional domain. In addition, SRP9 and SRP14 synthesized in vitro from synthetic mRNAs derived from their cDNA clones restore elongation arrest activity to SRP(-9/14).


1999 ◽  
Vol 10 (7) ◽  
pp. 2163-2173 ◽  
Author(s):  
Hans-Georg Koch ◽  
Thomas Hengelage ◽  
Christoph Neumann-Haefelin ◽  
Juan MacFarlane ◽  
Hedda K. Hoffschulte ◽  
...  

The molecular requirements for the translocation of secretory proteins across, and the integration of membrane proteins into, the plasma membrane of Escherichia coli were compared. This was achieved in a novel cell-free system from E. coliwhich, by extensive subfractionation, was simultaneously rendered deficient in SecA/SecB and the signal recognition particle (SRP) components, Ffh (P48), 4.5S RNA, and FtsY. The integration of two membrane proteins into inside-out plasma membrane vesicles of E. coli required all three SRP components and could not be driven by SecA, SecB, and ΔμH+. In contrast, these were the only components required for the translocation of secretory proteins into membrane vesicles, a process in which the SRP components were completely inactive. Our results, while confirming previous in vivo studies, provide the first in vitro evidence for the dependence of the integration of polytopic inner membrane proteins on SRP in E. coli. Furthermore, they suggest that SRP and SecA/SecB have different substrate specificities resulting in two separate targeting mechanisms for membrane and secretory proteins in E. coli. Both targeting pathways intersect at the translocation pore because they are equally affected by a blocked translocation channel.


Author(s):  
Sisi Kang ◽  
Mei Yang ◽  
Zhongsi Hong ◽  
Liping Zhang ◽  
Zhaoxia Huang ◽  
...  

AbstractThe outbreak of coronavirus disease (COVID-19) in China caused by SARS-CoV-2 virus continually lead to worldwide human infections and deaths. It is currently no specific viral protein targeted therapeutics yet. Viral nucleocapsid protein is a potential antiviral drug target, serving multiple critical functions during the viral life cycle. However, the structural information of SARS-CoV-2 nucleocapsid protein is yet to be clear. Herein, we have determined the 2.7 Å crystal structure of the N-terminal RNA binding domain of SARS-CoV-2 nucleocapsid protein. Although overall structure is similar with other reported coronavirus nucleocapsid protein N-terminal domain, the surface electrostatic potential characteristics between them are distinct. Further comparison with mild virus type HCoV-OC43 equivalent domain demonstrates a unique potential RNA binding pocket alongside the β-sheet core. Complemented by in vitro binding studies, our data provide several atomic resolution features of SARS-CoV-2 nucleocapsid protein N-terminal domain, guiding the design of novel antiviral agents specific targeting to SARS-CoV-2.


Sign in / Sign up

Export Citation Format

Share Document