scholarly journals GTP hydrolysis is required for vesicle fusion during nuclear envelope assembly in vitro.

1992 ◽  
Vol 116 (2) ◽  
pp. 281-294 ◽  
Author(s):  
A L Boman ◽  
M R Delannoy ◽  
K L Wilson

Nuclear envelope assembly was studied in vitro using extracts from Xenopus eggs. Nuclear-specific vesicles bound to demembranated sperm chromatin but did not fuse in the absence of cytosol. Addition of cytosol stimulated vesicle fusion, pore complex assembly, and eventual nuclear envelope growth. Vesicle binding and fusion were assayed by light and electron microscopy. Addition of ATP and GTP to bound vesicles caused limited vesicle fusion, but enclosure of the chromatin was not observed. This result suggested that nondialyzable soluble components were required for nuclear vesicle fusion. GTP gamma S and guanylyl imidodiphosphate significantly inhibited vesicle fusion but had no effect on vesicle binding to chromatin. Preincubation of membranes with 1 mM GTP gamma S or GTP did not impair vesicle binding or fusion when assayed with fresh cytosol. However, preincubation of membranes with GTP gamma S plus cytosol caused irreversible inhibition of fusion. The soluble factor mediating the inhibition by GTP gamma S, which we named GTP-dependent soluble factor (GSF), was titratable and was depleted from cytosol by incubation with excess membranes plus GTP gamma S, suggesting a stoichiometric interaction between GSF and a membrane component in the presence of GTP gamma S. In preliminary experiments, cytosol depleted of GSF remained active for fusion of chromatin-bound vesicles, suggesting that GSF may not be required for the fusion reaction itself. We propose that GTP hydrolysis is required at a step before the fusion of nuclear vesicles.

1985 ◽  
Vol 101 (2) ◽  
pp. 518-523 ◽  
Author(s):  
M J Lohka ◽  
J L Maller

Incubation of demembranated sperm chromatin in cytoplasmic extracts of unfertilized Xenopus laevis eggs resulted in nuclear envelope assembly, chromosome decondensation, and sperm pronuclear formation. In contrast, egg extracts made with EGTA-containing buffers induced the sperm chromatin to form chromosomes or irregularly shaped clumps of chromatin that were incorporated into bipolar or multipolar spindles. The 150,000 g supernatants of the EGTA extracts could not alone support these changes in incubated nuclei. However, these supernatants induced not only chromosome condensation and spindle formation, but also nuclear envelope breakdown when added to sperm pronuclei or isolated Xenopus liver or brain nuclei that were incubated in extracts made without EGTA. Similar changes were induced by partially purified preparations of maturation-promoting factor. The addition of calcium chloride to extracts containing condensed chromosomes and spindles caused dissolution of the spindles, decondensation of the chromosomes, and re-formation of interphase nuclei. These results indicate that nuclear envelope breakdown, chromosome condensation, and spindle assembly, as well as the regulation of these processes by Ca2+-sensitive cytoplasmic components, can be studied in vitro using extracts of amphibian eggs.


1992 ◽  
Vol 119 (1) ◽  
pp. 17-25 ◽  
Author(s):  
N Ulitzur ◽  
A Harel ◽  
N Feinstein ◽  
Y Gruenbaum

The role of the Drosophila lamin protein in nuclear envelope assembly was studied using a Drosophila in vitro assembly system that reconstitutes nuclei from added sperm chromatin or naked DNA. Upon incubation of the embryonic assembly extract with anti-Drosophila lamin antibodies, the attachment of nuclear membrane vesicles to chromatin surface and nuclear envelope formation did not occur. Lamina assembly and nuclear membrane vesicles attachment to the chromatin were inhibited only when the activity of the 75-kD lamin isoform was inhibited in both soluble and membrane-vesicles fractions. Incubation of decondensed sperm chromatin with an extract that was depleted of nuclear membranes revealed the presence of lamin molecules on the chromatin periphery. In addition, high concentrations of bacterially expressed lamin molecules added to the extract, were able to associate with the chromatin periphery, and did not inhibit nuclear envelope assembly. After nuclear reconstitution, a fraction of the lamin pool was converted into the typical 74- and 76-kD isoforms. Together, these data strongly support an essential role of the lamina in nuclear envelope assembly.


1984 ◽  
Vol 98 (4) ◽  
pp. 1222-1230 ◽  
Author(s):  
M J Lohka ◽  
Y Masui

A cell-free cytoplasmic preparation from activated Rana pipiens eggs could induce in demembranated Xenopus laevis sperm nuclei morphological changes similar to those seen during pronuclear formation in intact eggs. The condensed sperm chromatin underwent an initial rapid, but limited, dispersion. A nuclear envelope formed around the dispersed chromatin and the nuclei enlarged. The subcellular distribution of the components required for these changes was examined by separating the preparations into soluble (cytosol) and particulate fractions by centrifugation at 150,000 g for 2 h. Sperm chromatin was incubated with the cytosol or with the particulate material after it had been resuspended in either the cytosol, heat-treated (60 or 100 degrees C) cytosol or buffer. We found that the limited dispersion of chromatin occurred in each of these ooplasmic fractions, but not in the buffer alone. Nuclear envelope assembly required the presence of both untreated cytosol and particulate material. Ultrastructural examination of the sperm chromatin during incubation in the preparations showed that membrane vesicles of approximately 200 nm in diameter, found in the particulate fraction, flattened and fused together to contribute the membranous components of the nuclear envelope. The enlargement of the sperm nuclei occurred only after the nuclear envelope formed. The pronuclei formed in the cell-free preparations were able to incorporate [3H]dTTP into DNA. This incorporation was inhibited by aphidicolin, suggesting that the DNA synthesis by the pronuclei was dependent on DNA polymerase-alpha. When sperm chromatin was incubated greater than 3 h, the chromatin of the pronuclei often recondensed to form structures resembling mitotic chromosomes within the nuclear envelope. Therefore, it appeared that these ooplasmic preparations could induce, in vitro, nuclear changes resembling those seen during the first cell cycle in the zygote.


2003 ◽  
Vol 48 (18) ◽  
pp. 1912-1918
Author(s):  
Ning Yang ◽  
Zhongcai Chen ◽  
Ping Lu ◽  
Chuanmao Zhang ◽  
Zhonghe Zhai ◽  
...  

2001 ◽  
Vol 114 (24) ◽  
pp. 4575-4585 ◽  
Author(s):  
Tokuko Haraguchi ◽  
Takako Koujin ◽  
Miriam Segura-Totten ◽  
Kenneth K. Lee ◽  
Yosuke Matsuoka ◽  
...  

Mutations in emerin cause the X-linked recessive form of Emery-Dreifuss muscular dystrophy (EDMD). Emerin localizes at the inner membrane of the nuclear envelope (NE) during interphase, and diffuses into the ER when the NE disassembles during mitosis. We analyzed the recruitment of wildtype and mutant GFP-tagged emerin proteins during nuclear envelope assembly in living HeLa cells. During telophase, emerin accumulates briefly at the ‘core’ region of telophase chromosomes, and later distributes over the entire nuclear rim. Barrier-to-autointegration factor (BAF), a protein that binds nonspecifically to double-stranded DNA in vitro, co-localized with emerin at the ‘core’ region of chromosomes during telophase. An emerin mutant defective for binding to BAF in vitro failed to localize at the ‘core’ in vivo, and subsequently failed to localize at the reformed NE. In HeLa cells that expressed BAF mutant G25E, which did not show ‘core’ localization, the endogenous emerin proteins failed to localize at the ‘core’ region during telophase, and did not assemble into the NE during the subsequent interphase. BAF mutant G25E also dominantly dislocalized LAP2β and lamin A from the NE, but had no effect on the localization of lamin B. We conclude that BAF is required for the assembly of emerin and A-type lamins at the reforming NE during telophase, and may mediate their stability in the subsequent interphase.


1987 ◽  
Vol 7 (2) ◽  
pp. 760-768
Author(s):  
M J Lohka ◽  
J L Kyes ◽  
J L Maller

Cytoplasmic extracts of metaphase (M-phase)-arrested Xenopus laevis eggs support nuclear envelope breakdown and chromosome condensation in vitro. Induction of nuclear breakdown is inhibited by AMPP(NH)P, a nonhydrolyzable ATP analog, but not by ATP or gamma-S-ATP, a hydrolyzable ATP analog, suggesting that protein phosphorylation may be required for M-phase nuclear events in vitro. By addition of [gamma-32P]ATP, we have identified in cytoplasmic extracts and in intact eggs at least six phosphoproteins that are present during M-phase but absent in G1/S-phase. These phosphoproteins also appear in response to partially purified preparations of maturation-promoting factor. A subset of these proteins are thiophosphorylated by gamma-S-ATP under conditions that promote nuclear envelope breakdown and chromosome condensation. Each of these proteins is phosphorylated on serine and threonine, and one, a 42-kilodalton protein, is also phosphorylated on tyrosine both in extracts and in intact eggs. These results indicate that activation of protein kinases accounts for at least part of the increased phosphorylation in M-phase and that both protein-serine-threonine kinases and protein-tyrosine kinases may play a role in controlling M-phase nuclear behavior.


1988 ◽  
Vol 107 (1) ◽  
pp. 57-68 ◽  
Author(s):  
K L Wilson ◽  
J Newport

The reformation of functioning organelles at the end of mitosis presents a problem in vesicle targeting. Using extracts made from Xenopus laevis frog eggs, we have studied in vitro the vesicles that reform the nuclear envelope. In the in vitro assay, nuclear envelope growth is linear with time. Furthermore, the final surface area of the nuclear envelopes formed is directly dependent upon the amount of membrane vesicles added to the assay. Egg membrane vesicles could be fractionated into two populations, only one of which was competent for nuclear envelope assembly. We found that vesicles active in nuclear envelope assembly contained markers (BiP and alpha-glucosidase II) characteristic of the endoplasmic reticulum (ER), but that the majority of ER-derived vesicles do not contribute to nuclear envelope size. This functional distinction between nuclear vesicles and ER-derived vesicles implies that nuclear vesicles are unique and possess at least one factor required for envelope assembly that is lacking in other vesicles. Consistent with this, treatment of vesicles with trypsin destroyed their ability to form a nuclear envelope; electron microscopic studies indicate that the trypsin-sensitive proteins is required for vesicles to bind to chromatin. However, the protease-sensitive component(s) is resistant to treatments that disrupt protein-protein interactions, such as high salt, EDTA, or low ionic strength solutions. We propose that an integral membrane protein, or protein tightly associated with the membrane, is critical for nuclear vesicle targeting or function.


2020 ◽  
Author(s):  
P. Mühlenbrock ◽  
K. Herwig ◽  
L. Vuong ◽  
I. Mey ◽  
C. Steinem

ABSTRACTPlanar pore-spanning membranes (PSMs) have been shown to be a versatile tool to resolve docking and elementary steps of the fusion process with single large unilamellar vesicles (LUVs). However, in previous studies, we monitored only lipid mixing and did not gather information about the formation of fusion pores. To address this important step of the fusion process, we entrapped sulforhodamine B at self-quenching concentrations into LUVs containing the v-SNARE synaptobrevin 2, which were docked and fused with lipid-labeled PSMs containing the t-SNARE acceptor complex ΔN49 prepared on porous silicon substrates. By dual color spinning disc fluorescence microcopy with a time resolution of 20 ms, we could unambiguously distinguish between bursting vesicles and fusion pore formation. Owing to the aqueous compartment underneath the PSMs, vesicle bursting turned out to be an extremely rare event (< 0.01 %). From the time-resolved dual color fluorescence time traces, we were able to identify different fusion pathways including remaining three-dimensional postfusion structures with released content and flickering fusion pores. Our results on fusion pore formation and lipid diffusion from the PSM into the fusing vesicle let us conclude that the content release, i.e., fusion pore formation follows the merger of the two lipid membranes by only about 40 ms.STATEMENT OF SIGNIFICANCEDespite great efforts to develop in vitro fusion assays to understand the process of neuronal fusion, there is still a huge demand to provide single vesicle fusion assays that simultaneously report on all intermediate states including three-dimensional postfusion structures and fusion pore formation including flickering pores without the underlying artifact of vesicle bursting. Here, we show that pore-spanning membranes (PSMs) are ideal candidates to fulfill these demands. Owing to their planarity and the second aqueous compartments, they are readily accessible by fluorescence microscopy and provide sufficient space so that vesicle bursting becomes negligible. Dual color fluorescence microscopy allows distinguishing between different fusion intermediates and fusion pathways such as “kiss and run” fusion as well as flickering fusion pores.


2000 ◽  
Vol 113 (1) ◽  
pp. 135-144 ◽  
Author(s):  
R. Pepperkok ◽  
J.A. Whitney ◽  
M. Gomez ◽  
T.E. Kreis

Microinjection of the slowly hydrolyzable GTP analogue GTP(gamma)S or the ectopic expression of a GTP restricted mutant of the small GTPase arf1 (arf1[Q71L]) leads to the rapid accumulation of COPI coated vesicles and buds in living cells. This effect is blocked at 15 degrees C and by microinjection of antibodies against (beta)-COP. Anterograde and retrograde membrane protein transport markers, which have been previously shown to be incorporated into COPI vesicles between the endoplasmic reticulum and Golgi complex, are depleted from the GTP(gamma)S or arf1[Q71L] induced COPI coated vesicles and buds. In contrast, in control cells 30 to 60% of the COPI carriers co-localize with these markers. These in vivo data corroborate recent in vitro work, suggesting that GTP(gamma)S and arf1[Q71L] interfere with the sorting of membrane proteins into Golgi derived COPI vesicles, and provide the first in vivo evidence for a role of GTP hydrolysis by arf1 in the sorting of cargo into COPI coated vesicles and buds.


Sign in / Sign up

Export Citation Format

Share Document