scholarly journals Apical polarization of N-CAM in retinal pigment epithelium is dependent on contact with the neural retina.

1993 ◽  
Vol 121 (2) ◽  
pp. 335-343 ◽  
Author(s):  
D Gundersen ◽  
S K Powell ◽  
E Rodriguez-Boulan

The retinal pigment epithelium (RPE) is unique among epithelia in that its apical surface does not face a lumen, but, instead, is specialized for interaction with the neural retina. The molecules involved in the interaction of the RPE with the neural retina are not known. We show here that the neural cell adhesion molecule (N-CAM) is found both on the apical surface of RPE in situ and on the outer segments of photoreceptors, fulfilling an important requisite for an adhesion role between both structures. Strikingly, culture of RPE results in rapid redistribution of N-CAM to the basolateral surface. This is not due to an isoform shift, since the N-CAM expressed by cultured cells (140 kD) is the same as that expressed by RPE in vivo. Rather, the reversed polarity of N-CAM appears to result from the disruption of the contact between the RPE and the photoreceptors of the neural retina. We suggest that N-CAM in RPE and photoreceptors participate in these interactions.

1988 ◽  
Vol 91 (2) ◽  
pp. 303-312
Author(s):  
N.M. McKechnie ◽  
M. Boulton ◽  
H.L. Robey ◽  
F.J. Savage ◽  
I. Grierson

The cytoskeletal elements of normal (in situ) and cultured human retinal pigment epithelium (RPE) were studied by a variety of immunocytochemical techniques. Primary antibodies to vimentin and cytokeratins were used. Positive immunoreactivity for vimentin was obtained with in situ and cultured material. The pattern of reactivity obtained with antisera and monoclonals to cytokeratins was more complex. Cytokeratin immunoreactivity could be demonstrated in situ and in cultured cells. The pattern of cytokeratin expression was similar to that of simple or glandular epithelia. A monoclonal antibody that specifically recognizes cytokeratin 18 identified a population of cultured RPE cells that had particularly well-defined filamentous networks within their cytoplasm. Freshly isolated RPE was cytokeratin 18 negative by immunofluorescence, but upon culture cytokeratin 18 positive cells were identifiable. Cytokeratin 18 positive cells were identified in all RPE cultures (other than early primaries), regardless of passage number, age or sex of the donor. In post-confluent cultures cytokeratin 18 cells were identified growing over cytokeratin 18 negative cells, suggesting an association of cytokeratin 18 immunoreactivity with cell proliferation. Immunofluorescence studies of retinal scar tissue from two individuals revealed the presence of numerous cytokeratin 18 positive cells. These findings indicate that RPE cells can be identified by their cytokeratin immunoreactivity and that the overt expression of cytokeratin 18 may be associated with proliferation of human RPE both in vitro and in vivo.


1997 ◽  
Vol 110 (15) ◽  
pp. 1717-1727 ◽  
Author(s):  
V.L. Bonilha ◽  
A.D. Marmorstein ◽  
L. Cohen-Gould ◽  
E. Rodriguez-Boulan

The retinal pigment epithelium is endowed with a unique distribution of certain plasma membrane proteins. Na+,K+-ATPase, for instance, is polarized to the apical surface of RPE, rather than to the basolateral surface as in most other epithelia. To study the sorting pathways of RPE cells, we used temperature sensitive mutants of influenza and vesicular stomatitis virus (VSV) to synchronize the transport of hemagglutinin (HA) and VSV G protein (VSV G) along the biosynthetic pathway of the RPE cell line RPE-J. After HA and VSV G accumulated in the trans-Golgi network of RPE-J cells kept at 20 degrees C, transfer to the permissive temperature (32 degrees C) resulted in the transport of both HA and VSV G to the basolateral plasma membrane. Later, while VSV G remained basolateral, HA progressively reversed its polarity, eventually becoming apical. Further analysis demonstrated that the reversal of HA polarity was due to transcytosis of HA from the basolateral to the apical surface of RPE-J cells. To determine whether HA followed a transcytotic route in RPE in vivo, influenza and VSV were injected into the subretinal space of rat eyes. Again, both HA and VSV G were initially observed at the basolateral surface of RPE cells. However, whereas VSV G remained there, HA progressively redistributed to the apical surface. These findings demonstrated that RPE cells use a transcytotic pathway for the targeting of at least some apical proteins to their destination.


1993 ◽  
Vol 104 (1) ◽  
pp. 37-49 ◽  
Author(s):  
I.R. Nabi ◽  
A.P. Mathews ◽  
L. Cohen-Gould ◽  
D. Gundersen ◽  
E. Rodriguez-Boulan

Rat retinal pigment epithelial (RPE) cells were immortalized by infection with a temperature-sensitive tsA SV40 virus and following cloning and selection for epithelial properties the polarized RPE-J cell line was obtained. At the permissive temperature of 33 degrees C, RPE-J cells behave as an immortalized cell line. When RPE-J cells are grown on nitrocellulose filters coated with a thin layer of Matrigel in the presence of 10(−8) M retinoic acid for 6 days at 33 degrees C and then switched for 33–36 hours to the non-permissive temperature of 40 degrees C, they acquire a differentiated polarized RPE phenotype. Under these growth conditions, RPE-J cells exhibit circumferential staining for the tight-junction protein ZO-1 and acquire a transepithelial resistance of 350 ohms cm2. Morphologically, RPE-J cells exhibit a characteristic RPE morphology with extensive apical microvilli as well as numerous dense bodies including premelanosomes and varied multilamellar structures. Ruthenium red labeling revealed the frequent basal localization of the tight junction. The cells were identified to be of rat RPE origin by their expression of the rat RPE marker RET-PE2 and their ability to phagocytose latex beads. While RPE-J cells are capable of sorting influenza and vesicular stomatitis virus to the apical and basal surfaces, respectively, the Na,K-ATPase is not polarized and the neural cell adhesion molecule, N-CAM, is localized exclusively to the lateral surface. In vivo the apical surface of RPE interacts with the adjacent neural retina and the Na,K-ATPase and N-CAM are both apical; the altered polarity of these two proteins in RPE-J cells may be a consequence of the absence of apical interaction with the neural retina in culture. Previous studies of RPE have been restricted to the use of primary cultures and the RPE-J cell line should prove an excellent model system for the study of the mechanisms determining the characteristic polarity and functions of the retinal pigment epithelium.


2017 ◽  
Vol 117 (04) ◽  
pp. 750-757
Author(s):  
Xin Jia ◽  
Chen Zhao ◽  
Qishan Chen ◽  
Yuxiang Du ◽  
Lijuan Huang ◽  
...  

SummaryJunctional adhesion molecule-C (JAM-C) has been shown to play critical roles during development and in immune responses. However, its role in adult eyes under oxidative stress remains poorly understood. Here, we report that JAM-C is abundantly expressed in adult mouse retinae and choroids in vivo and in cultured retinal pigment epithelium (RPE) and photoreceptor cells in vitro. Importantly, both JAM-C expression and its membrane localisation are downregulated by H2O2-induced oxidative stress. Under H2O2-induced oxidative stress, JAM-C is critically required for the survival of human RPE cells. Indeed, loss of JAM-C by siRNA knockdown decreased RPE cell survival. Mechanistically, we show that JAM-C is required to maintain VEGFR2 expression in RPE cells, and VEGFR2 plays an important role in keeping the RPE cells viable since overexpression of VEGFR2 partially restored impaired RPE survival caused by JAM-C knockdown and increased RPE survival. We further show that JAM-C regulates VEGFR2 expression and, in turn, modulates p38 phosphorylation. Together, our data demonstrate that JAM-C plays an important role in maintaining VEGR2 expression to promote RPE cell survival under oxidative stress. Given the vital importance of RPE in the eye, approaches that can modulate JAM-C expression may have therapeutic values in treating diseases with impaired RPE survival.


Retina ◽  
2013 ◽  
pp. 605-617
Author(s):  
Louisa Wickham ◽  
Geoffrey P. Lewis ◽  
David G. Charteris ◽  
Steven K. Fisher

Sign in / Sign up

Export Citation Format

Share Document