scholarly journals Increased expression of the 43-kD protein disrupts acetylcholine receptor clustering in myotubes

1993 ◽  
Vol 122 (1) ◽  
pp. 169-179 ◽  
Author(s):  
CM Yoshihara ◽  
ZW Hall

The 43-kD protein is a peripheral membrane protein that is in approximately 1:1 stoichiometry with the acetylcholine receptor (AChR) in vertebrate muscle cells and colocalizes with it in the postsynaptic membrane. To investigate the role of the 43-kD protein in AChR clustering, we have isolated C2 muscle cell lines in which some cells overexpress the 43-kD protein. We find that myotubes with increased levels of the 43-kD protein have small AChR clusters and that those with the highest levels of expression have a drastically reduced number of clusters. Our results suggest that the 1:1 stoichiometry of AChR and 43-kD protein found in muscle cells is important for AChR cluster formation.

1998 ◽  
Vol 141 (7) ◽  
pp. 1613-1624 ◽  
Author(s):  
Zhengshan Dai ◽  
H. Benjamin Peng

Innervation of the skeletal muscle involves local signaling, leading to acetylcholine receptor (AChR) clustering, and global signaling, manifested by the dispersal of preexisting AChR clusters (hot spots). Receptor tyrosine kinase (RTK) activation has been shown to mediate AChR clustering. In this study, the role of tyrosine phosphatase (PTPase) in the dispersal of hot spots was examined. Hot spot dispersal in cultured Xenopus muscle cells was initiated immediately upon the presentation of growth factor–coated beads that induce both AChR cluster formation and dispersal. Whereas the density of AChRs decreased with time, the fine structure of the hot spot remained relatively constant. Although AChR, rapsyn, and phosphotyrosine disappeared, a large part of the original hot spot–associated cytoskeleton remained. This suggests that the dispersal involves the removal of a key linkage between the receptor and its cytoskeletal infrastructure. The rate of hot spot dispersal is inversely related to its distance from the site of synaptic stimulation, implicating the diffusible nature of the signal. PTPase inhibitors, such as pervanadate or phenylarsine oxide, inhibited hot spot dispersal. In addition, they also affected the formation of new clusters in such a way that AChR microclusters extended beyond the boundary set by the clustering stimuli. Furthermore, by introducing a constitutively active PTPase into cultured muscle cells, hot spots were dispersed in a stimulus- independent fashion. This effect of exogenous PTPase was also blocked by pervanadate. These results implicate a role of PTPase in AChR cluster dispersal and formation. In addition to RTK activation, synaptic stimulation may also activate PTPase which acts globally to destabilize preexisting AChR hot spots and locally to facilitate AChR clustering in a spatially discrete manner by countering the action of RTKs.


1993 ◽  
Vol 120 (1) ◽  
pp. 185-195 ◽  
Author(s):  
L P Baker ◽  
H B Peng

Aggregation of the nicotinic acetylcholine receptor (AChR) at sites of nerve-muscle contact is one of the earliest events to occur during the development of the neuromuscular junction. The stimulus presented to the muscle by nerve and the mechanisms underlying postsynaptic differentiation are not known. The purpose of this study was to examine the distribution of phosphotyrosine (PY)-containing proteins in cultured Xenopus muscle cells in response to AChR clustering stimuli. Results demonstrated a distinct accumulation of PY at AChR clusters induced by several stimuli, including nerve, the culture substratum, and polystyrene microbeads. AChR microclusters formed by external cross-linking did not show PY colocalization, implying that the accumulation of PY in response to clustering stimuli was not due to the aggregation of basally phosphorylated AChRs. A semi-quantitative determination of the time course for development of PY labeling at bead contacts revealed early PY accumulation within 15 min of contact before significant AChR aggregation. At later stages (within 15 h), the AChR signal came to approximate the PY signal. We have reported the inhibition of bead-induced AChR clustering in response to beads by a tyrphostin tyrosine kinase inhibitor (RG50864) (Peng, H. B., L. P. Baker, and Q. Chen. 1991. Neuron. 6:237-246). RG50864 also inhibited PY accumulation at bead contacts, providing evidence for tyrosine kinase activation in response to the bead stimulus. These results suggest that tyrosine phosphorylation may play an important role in the generative stages of cluster formation, and may involve protein(s) other than or in addition to AChRs.


1985 ◽  
Vol 100 (5) ◽  
pp. 1698-1705 ◽  
Author(s):  
H B Peng ◽  
S C Froehner

The postsynaptic membrane from Torpedo electric organ contains, in addition to the acetylcholine receptor (AChR), a major peripheral membrane protein of approximately 43,000 mol wt (43K protein). Previous studies have shown that this protein is closely associated with AChR and may be involved in anchoring receptors to the postsynaptic membrane. In this study, binding sites for monoclonal antibodies (mabs) to the 43K protein have been compared to the distribution of AChR in Xenopus laevis muscle cells in culture. In double label immunofluorescence experiments, clusters of AChR that occur spontaneously on these cells were stained with anti-43K mabs. Newly formed receptor clusters induced with positive polypeptide-coated latex beads were also stained with anti-43K mabs as early as 12 h after the application of the beads. Exact correspondence in the distribution of the anti-43K protein binding sites and the AChR was found in both types of clusters. These results suggest that the 43K protein becomes associated with AChR clusters during a period of active postsynaptic membrane differentiation. Thus, this protein may participate in the clustering process.


1993 ◽  
Vol 120 (1) ◽  
pp. 197-204 ◽  
Author(s):  
H B Peng ◽  
L P Baker ◽  
Z Dai

During the development of the neuromuscular junction, acetylcholine receptors (AChRs) become clustered in the postsynaptic membrane in response to innervation. In vitro, several non-neuronal stimuli can also induce the formation of AChR clusters. DC electric field (E field) is one of them. When cultured Xenopus muscle cells are exposed to an E field of 5-10 V/cm, AChRs become clustered along the cathode-facing edge of the cells within 2 h. Recent studies have suggested the involvement of tyrosine kinase activation in the action of several AChR clustering stimuli, including nerve, polymer beads, and agrin. We thus examined the role of tyrosine phosphorylation in E field-induced AChR clustering. An antibody against phosphotyrosine (PY) was used to examine the localization of PY-containing proteins in E field-treated muscle cells. We found that anti-PY staining was colocalized with AChR clusters along the cathodal edge of the cells. In fact, cathodal PY staining could be detected before the first appearance of AChR clusters. When cultures were subjected to E fields in the presence of a tyrosine kinase inhibitor, tyrphostin RG-50864, cathodal AChR clustering was abolished with a half maximal inhibitory dosage of 50 microM. An inactive form of tyrphostin (RG-50862) had no effect on the field-induced clustering. These data suggest that the activation of tyrosine kinases is an essential step in E field-induced AChR clustering. Thus, the actions of several disparate stimuli for AChR clustering seem to converge to a common signal transduction mechanism based on tyrosine phosphorylation at the molecular level.


1988 ◽  
Vol 254 (3) ◽  
pp. C345-C364 ◽  
Author(s):  
R. J. Bloch ◽  
D. W. Pumplin

The clustering of acetylcholine receptors (AChR) in the postsynaptic membrane of newly innervated muscle fibers is one of the earliest events in the development of the vertebrate neuromuscular junction. Here, we describe two hypotheses that can account for AChR clustering in response to innervation. The "trophic factor" hypothesis proposes that the neuron releases a soluble factor that interacts with the muscle cell in a specific manner and that this interaction results in the local accumulation of AChR. The "contact and adhesion" hypothesis proposes that the binding of the nerve to the muscle cell surface is itself sufficient to induce AChR clustering, without the participation of soluble factors. We present a model for the molecular assembly of AChR clusters based on the contact and adhesion hypothesis. The model involves the sequential assembly of three distinct membrane domains. The first domain to form serves to attach microfilaments to the cytoplasmic surface of the muscle cell membrane at sites of muscle-nerve adhesion. The second domain to form is clathrin-coated membrane; it serves as a site of insertion of additional membrane elements, including AChR. Upon insertion of AChR into the cell surface, a membrane skeleton assembles by anchoring itself to the AChR. The skeleton, composed in part of actin and spectrin, binds and immobilizes significant numbers of AChR, thereby forming the third membrane domain of the AChR cluster. We make several predictions that should distinguish this model of AChR clustering from one that invokes soluble, trophic factors.


1989 ◽  
Vol 109 (5) ◽  
pp. 2337-2344 ◽  
Author(s):  
G Marazzi ◽  
F Bard ◽  
M W Klymkowsky ◽  
L L Rubin

We have shown previously that chick muscle cells transformed with Rous sarcoma virus are unable to form clusters of acetylcholine receptors (AChRs) (Anthony, D. T., S. M. Schuetze, and L. L. Rubin. 1984. Proc. Natl. Acad. Sci. USA. 81:2265-2269) and are missing a 37-KD tropomyosin-like protein (TM-2) (Anthony, D. T., R. J. Jacobs-Cohen, G. Marazzi, and L. L. Rubin. 1988. J. Cell Biol. 106:1713-1721). In an attempt to clarify the role of TM-2 in the formation and/or maintenance of AChR clusters, we have microinjected a monoclonal antibody specific for TM-2 (D3-16) into normal chick muscle cells in culture. D3-16 injection blocks the formation of new clusters but does not affect the preexisting ones. In addition, TM-2 is concentrated at rat neuromuscular junctions. These data suggest that TM-2 may play an important role in promoting the formation of AChR clusters.


2004 ◽  
Vol 24 (18) ◽  
pp. 7841-7854 ◽  
Author(s):  
Peggy Mittaud ◽  
Alain A. Camilleri ◽  
Raffaella Willmann ◽  
Susanne Erb-Vögtli ◽  
Steven J. Burden ◽  
...  

ABSTRACT Agrin triggers signaling mechanisms of high temporal and spatial specificity to achieve phosphorylation, clustering, and stabilization of postsynaptic acetylcholine receptors (AChRs). Agrin transiently activates the kinase MuSK; MuSK activation has largely vanished when AChR clusters appear. Thus, a tyrosine kinase cascade acts downstream from MuSK, as illustrated by the agrin-evoked long-lasting activation of Src family kinases (SFKs) and their requirement for AChR cluster stabilization. We have investigated this cascade and report that pharmacological inhibition of SFKs reduces early but not later agrin-induced phosphorylation of MuSK and AChRs, while inhibition of Abl kinases reduces late phosphorylation. Interestingly, SFK inhibition applied selectively during agrin-induced AChR cluster formation caused rapid cluster dispersal later upon agrin withdrawal. We also report that a single 5-min agrin pulse, followed by extensive washing, triggered long-lasting MuSK and AChR phosphorylation and efficient AChR clustering. Following the pulse, MuSK phosphorylation increased and, beyond a certain level, caused maximal clustering. These data reveal novel temporal aspects of tyrosine kinase action in agrin signaling. First, during AChR cluster formation, SFKs initiate early phosphorylation and an AChR stabilization program that acts much later. Second, a kinase mechanism rapidly activated by agrin acts thereafter autonomously in agrin's absence to further increase MuSK phosphorylation and cluster AChRs.


Sign in / Sign up

Export Citation Format

Share Document