scholarly journals Retrograde lipid traffic in yeast: identification of two distinct pathways for internalization of fluorescent-labeled phosphatidylcholine from the plasma membrane.

1993 ◽  
Vol 123 (6) ◽  
pp. 1403-1419 ◽  
Author(s):  
L S Kean ◽  
R S Fuller ◽  
J W Nichols

Digital, video-enhanced fluorescence microscopy and spectrofluorometry were used to follow the internalization into the yeast Saccharomyces cerevisiae of phosphatidylcholine molecules labeled on one acyl chain with the fluorescent probe 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD). Two pathways were found: (1) transport by endocytosis to the vacuole and (2) transport by a non-endocytic pathway to the nuclear envelope and mitochondria. The endocytic pathway was inhibited at low temperature (< 2 degrees C) and by ATP depletion. Mutations in secretory (SEC) genes that are necessary for membrane traffic through the secretory pathway (including SEC1, SEC2, SEC4, SEC6, SEC7, SEC12, SEC14, SEC17, SEC18, and SEC21) almost completely blocked endocytic uptake. In contrast, mutations in the SEC63, SEC65, or SEC11 genes, required for translocation of nascent secretory polypeptides into the ER or signal peptide processing in the ER, only slightly reduced endocytic uptake. Phospholipid endocytosis was also independent of the gene encoding the clathrin heavy chain, CHC1. The correlation of biochemical analysis with fluorescence microscopy indicated that the fluorescent phosphatidylcholine was degraded in the vacuole and that degradation was, at least in part, dependent on the vacuolar proteolytic cascade. The non-endocytic route functioned with a lower cellular energy charge (ATP levels 80% reduced) and was largely independent of the SEC genes. Non-endocytic transport of NBD-phosphatidylcholine to the nuclear envelope and mitochondria was inhibited by pretreatment of cells with the sulfhydryl reagents N-ethylmaleimide and p-chloromercuribenzenesulfonic acid, suggesting the existence of protein-mediated transmembrane transfer (flip-flop) of phosphatidylcholine across the yeast plasma membrane. These data establish a link between lipid movement during secretion and endocytosis in yeast and suggest that phospholipids may also gain access to intracellular organelles through non-endocytic, protein-mediated events.

1999 ◽  
Vol 10 (2) ◽  
pp. 455-469 ◽  
Author(s):  
Sourav Ghosh ◽  
Kathleen H. Cox ◽  
John V. Cox

Chicken erythroid AE1 anion exchangers receive endoglycosidase F (endo F)-sensitive sugar modifications in their initial transit through the secretory pathway. After delivery to the plasma membrane, anion exchangers are internalized and recycled to the Golgi where they acquire additional N-linked modifications that are resistant to endo F. During recycling, some of the anion exchangers become detergent insoluble. The acquisition of detergent insolubility correlates with the association of the anion exchanger with cytoskeletal ankyrin. Reagents that inhibit different steps in the endocytic pathway, including 0.4 M sucrose, ammonium chloride, and brefeldin A, block the acquisition of endo F-resistant sugars and the acquisition of detergent insolubility by newly synthesized anion exchangers. The inhibitory effects of ammonium chloride on anion exchanger processing are rapidly reversible. Furthermore, AE1 anion exchangers become detergent insoluble more rapidly than they acquire endo F-resistant modifications in cells recovering from an ammonium chloride block. This suggests that the cytoskeletal association of the recycling anion exchangers occurs after release from the compartment where they accumulate due to ammonium chloride treatment, and prior to their transit through the Golgi. The recycling pool of newly synthesized anion exchangers is reflected in the steady-state distribution of the polypeptide. In addition to plasma membrane staining, anion exchanger antibodies stain a perinuclear compartment in erythroid cells. This perinuclear AE1-containing compartment is also stained by ankyrin antibodies and partially overlaps the membrane compartment stained by NBD C6-ceramide, a Golgi marker. Detergent extraction of erythroid cells in situ has suggested that a substantial fraction of the perinuclear pool of AE1 is cytoskeletal associated. The demonstration that erythroid anion exchangers interact with elements of the cytoskeleton during recycling to the Golgi suggests the cytoskeleton may be involved in the post-Golgi trafficking of this membrane transporter.


1995 ◽  
Vol 128 (6) ◽  
pp. 1003-1017 ◽  
Author(s):  
P J Peters ◽  
V W Hsu ◽  
C E Ooi ◽  
D Finazzi ◽  
S B Teal ◽  
...  

The ARF GTP binding proteins are believed to function as regulators of membrane traffic in the secretory pathway. While the ARF1 protein has been shown in vitro to mediate the membrane interaction of the cytosolic coat proteins coatomer (COP1) and gamma-adaptin with the Golgi complex, the functions of the other ARF proteins have not been defined. Here, we show by transient transfection with epitope-tagged ARFs, that whereas ARF1 is localized to the Golgi complex and can be shown to affect predictably the assembly of COP1 and gamma-adaptin with Golgi membranes in cells, ARF6 is localized to the endosomal/plasma membrane system and has no effect on these Golgi-associated coat proteins. By immuno-electron microscopy, the wild-type ARF6 protein is observed along the plasma membrane and associated with endosomes, and overexpression of ARF6 does not appear to alter the morphology of the peripheral membrane system. In contrast, overexpression of ARF6 mutants predicted either to hydrolyze or bind GTP poorly shifts the distribution of ARF6 and affects the structure of the endocytic pathway. The GTP hydrolysis-defective mutant is localized to the plasma membrane and its overexpression results in a profound induction of extensive plasma membrane vaginations and a depletion of endosomes. Conversely, the GTP binding-defective ARF6 mutant is present exclusively in endosomal structures, and its overexpression results in a massive accumulation of coated endocytic structures.


1994 ◽  
Vol 125 (4) ◽  
pp. 769-781 ◽  
Author(s):  
O C Martin ◽  
R E Pagano

We examined the uptake and intracellular transport of the fluorescent glucosylceramide analogue N-[5-(5,7-dimethyl BODIPYTM)-1-pentanoyl]-glucosyl sphingosine (C5-DMB-GlcCer) in human skin fibroblasts, and we compared its behavior to that of the corresponding fluorescent analogues of sphingomyelin, galactosylceramide, and lactosylceramide. All four fluorescent analogues were readily transferred from defatted BSA to the plasma membrane during incubation at 4 degrees C. When cells treated with C5-DMB-GlcCer were washed, warmed to 37 degrees C, and subsequently incubated with defatted BSA to remove fluorescent lipid at the cell surface, strong fluorescence was observed at the Golgi apparatus, as well as weaker labeling at the nuclear envelope and other intracellular membranes. Similar results were obtained with C5-DMB-galactosylceramide, except that labeling of the Golgi apparatus was weaker than with C5-DMB-GlcCer. Internalization of C5-DMB-GlcCer was not inhibited by various treatments, including ATP depletion or warming to 19 degrees C, and biochemical analysis demonstrated that the lipid was not metabolized during its internalization. However, accumulation of C5-DMB-GlcCer at the Golgi apparatus was reduced when cells were treated with a nonfluorescent analogue of glucosylceramide, suggesting that accumulation of C5-DMB-GlcCer at the Golgi apparatus was a saturable process. In contrast, cells treated with C5-DMB-analogues of sphingomyelin or lactosylceramide internalized the fluorescent lipid into a punctate pattern of fluorescence during warming at 37 degrees C, and this process was temperature and energy dependent. These results with C5-DMB-sphingomyelin and C5-DMB-lactosylceramide were analogous to those obtained with another fluorescent analogue of sphingomyelin in which labeling of endocytic vesicles and plasma membrane lipid recycling were documented (Koval, M., and R. E. Pagano. 1990. J. Cell Biol. 111:429-442). Incubation of perforated cells with C5-DMB-sphingomyelin resulted in prominent labeling of the nuclear envelope and other intracellular membranes, similar to the pattern observed with C5-DMB-GlcCer in intact cells. These observations are consistent with the transbilayer movement of fluorescent analogues of glucosylceramide and galactosylceramide at the plasma membrane and early endosomes of human skin fibroblasts, and suggest that both endocytic and nonendocytic pathways are used in the internalization of these lipids from the plasma membrane.


1999 ◽  
Vol 341 (2) ◽  
pp. 445-452 ◽  
Author(s):  
M. Kerstin HENKEL ◽  
Gregory POTT ◽  
Andreas W. HENKEL ◽  
Luiz JULIANO ◽  
Chih-Min KAM ◽  
...  

Kex2 in the yeast Saccharomyces cerevisiae is a transmembrane, Ca2+-dependent serine protease of the subtilisin-like pro-protein convertase (SPC) family with specificity for cleavage after paired basic amino acids. At steady state, Kex2 is predominantly localized in late Golgi compartments and initiates the proteolytic maturation of pro-protein precursors that transit the distal secretory pathway. However, Kex2 localization is not static, and its itinerary apparently involves transiting out of the late Golgi and cycling back from post-Golgi endosomal compartments during its lifetime. We tested whether the endocytic pathway could deliver small molecules to Kex2 from the extracellular medium. Here we report that intramolecularly quenched fluorogenic substrates taken up into intact yeast revealed fluorescence due to specific cleavage by Kex2 protease in endosomal compartments. Furthermore, the endocytic delivery of protease inhibitors interfered with Kex2 activity for precursor protein processing. These observations reveal that the endocytic pathway does intersect with the cycling itinerary of active Kex2 protease. This strategy of endocytic drug delivery has implications for modulating SPC protease activity needed for hormone, toxin and viral glycoprotein precursor processing in human cells.


1995 ◽  
Vol 308 (3) ◽  
pp. 847-851 ◽  
Author(s):  
D Urban-Grimal ◽  
B Pinson ◽  
J Chevallier ◽  
R Haguenauer-Tsapis

The co-transport of uracil and protons through the plasma membrane of the yeast Saccharomyces cerevisiae is mediated by a specific permease encoded by the FUR4 gene. The uracil permease is a multi-spanning membrane protein that follows the secretory pathway to the plasma membrane. Recent experimental data led to the proposal of a two-dimensional model of its topology. A spontaneous mutant corresponding to the substitution of Lys-272 by glutamic acid was obtained. The influence of this mutation was studied by comparing the wild-type and mutant permeases produced in a strain carrying a chromosomal deletion of the FUR4 gene. The mutant permease is correctly targeted to the plasma membrane and its stability is similar to that of the wild-type permease. The uptake parameters for the mutant permease were impaired and showed an approximately 65-fold increase of apparent K(m) and a decrease in apparent Vmax. Equilibrium binding measurements with enriched plasma membrane preparations showed an approximately 70-fold increase in apparent Kd in the mutant, whereas its Bmax. was similar to that of the wild type. Lys-272 is fully conserved in the uracil permease family and is predicted to lie in the fourth transmembrane segment of the protein. It seems to be essential for both efficient uracil binding and translocation.


1999 ◽  
Vol 339 (1) ◽  
pp. 37-42 ◽  
Author(s):  
Benoît PINSON ◽  
Jean CHEVALLIER ◽  
Danièle URBAN-GRIMAL

The transport of uracil into the yeast Saccharomyces cerevisiae is mediated by uracil permease, a specific co-transporter encoded by the FUR4 gene. Uracil permease is a multispan membrane protein that is delivered to the plasma membrane via the secretory pathway. Experimental results led to the proposal of a two-dimensional model of the protein's topology. According to this model, the membrane domain of Fur4p contains three charged amino acid residues (Glu-243, Lys-272 and Glu-539) that are conserved in the members of the FUR family of yeast transporters. We have previously shown that a mis-sense mutation leading to the replacement of Lys-272 by Glu severely impairs the function of uracil permease. In the present paper, the role of the three charged residues present in the membrane-spanning regions of Fur4p was further investigated by using site-directed mutagenesis. The variant permeases were correctly targeted to the plasma membrane and their stabilities were similar to that of the wild-type permease. The effect of the mutations was studied by measuring the uptake constants for uracil on whole cells and equilibrium binding parameters on plasma membrane-enriched fractions. We found no evidence for ionic interaction between either of the glutamic residues in transmembrane segments 3 and 9 and the lysine residue in transmembrane segment 4. Of the three charged residues, only Lys-272 was important for the transport activity of the transporter. Its replacement by Ala, Glu or even Arg strongly impaired both the binding and the translocation of uracil.


2011 ◽  
Vol 22 (12) ◽  
pp. 2068-2082 ◽  
Author(s):  
Karine Laulagnier ◽  
Nicole L. Schieber ◽  
Tanja Maritzen ◽  
Volker Haucke ◽  
Robert G. Parton ◽  
...  

Whereas lysosome-related organelles (LRO) of specialized cells display both exocytic and endocytic features, lysosomes in nonspecialized cells can also acquire the property to fuse with the plasma membrane upon an acute rise in cytosolic calcium. Here, we characterize this unconventional secretory pathway in fibroblast-like cells, by monitoring the appearance of Lamp1 on the plasma membrane and the release of lysosomal enzymes into the medium. After sequential ablation of endocytic compartments in living cells, we find that donor membranes primarily derive from a late compartment, but that an early compartment is also involved. Strikingly, this endo-secretory process is not affected by treatments that inhibit endosome dynamics (microtubule depolymerization, cholesterol accumulation, overexpression of Rab7 or its effector Rab-interacting lysosomal protein [RILP], overexpression of Rab5 mutants), but depends on Rab27a, a GTPase involved in LRO secretion, and is controlled by F-actin. Moreover, we find that this unconventional endo-secretory pathway requires the adaptor protein complexes AP1, Gadkin (which recruits AP1 by binding to the γ1 subunit), and AP2, but not AP3. We conclude that a specific fraction of the AP2-derived endocytic pathway is dedicated to secretory purposes under the control of AP1 and Gadkin.


1998 ◽  
Vol 141 (1) ◽  
pp. 71-84 ◽  
Author(s):  
Beverly Wendland ◽  
Scott D. Emr

A genetic screen for factors required for endocytosis in the budding yeast Saccharomyces cerevisiae previously identified PAN1. Pan1p is a homologue of the mammalian protein eps15, which has been implicated in endocytosis by virtue of its association with the plasma membrane clathrin adaptor complex AP-2. Pan1p contains two eps15 homology (EH) domains, a protein–protein interaction motif also present in other proteins that function in membrane trafficking. To address the role of Pan1p and EH domains in endocytosis, a yeast two-hybrid screen was performed using the EH domain–containing region of Pan1p. This screen identified yAP180A, one of two yeast homologues of a class of clathrin assembly proteins (AP180) that exhibit in vitro clathrin cage assembly activity. In vitro binding studies using GST fusion proteins and yeast extracts defined distinct binding sites on yAP180A for Pan1p and clathrin. yAP180 proteins and Pan1p, like actin, localize to peripheral patches along the plasma membrane. Mammalian synaptojanin, a phosphatidylinositol polyphosphate-5-phosphatase, also has been implicated in endocytosis recently, and three synaptojanin-like genes have been identified in yeast. We observed genetic interactions between the yeast SJL1 gene and PAN1, which suggest a role for phosphoinositide metabolites in Pan1p function. Together with other studies, these findings suggest that Pan1p coordinates regulatory interactions between proteins required for both endocytosis and actin-cytoskeleton organization; these proteins include the yAP180 proteins, clathrin, the ubiquitin–protein ligase Rsp5p, End3p, and synaptojanin. We suggest that Pan1p (and by extension eps15) serves as a multivalent adaptor around which dynamic interactions between structural and regulatory components of the endocytic pathway converge.


Sign in / Sign up

Export Citation Format

Share Document