scholarly journals Lysosome biogenesis requires Rab9 function and receptor recycling from endosomes to the trans-Golgi network.

1994 ◽  
Vol 125 (3) ◽  
pp. 573-582 ◽  
Author(s):  
M A Riederer ◽  
T Soldati ◽  
A D Shapiro ◽  
J Lin ◽  
S R Pfeffer

Newly synthesized lysosomal enzymes bind to mannose 6-phosphate receptors (MPRs) in the TGN, and are carried to prelysosomes, where they are released. MPRs then return to the TGN for another round of transport. Rab9 is a ras-like GTPase which facilitates MPR recycling to the TGN in vitro. We show here that a dominant negative form of rab9, rab9 S21N, strongly inhibited MPR recycling in living cells. The block was specific in that the rates of biosynthetic protein transport, fluid phase endocytosis and receptor-mediated endocytosis were unchanged. Expression of rab9 S21N was accompanied by a decrease in the efficiency of lysosomal enzyme sorting. Cells compensated for the presence of the mutant protein by inducing the synthesis of both soluble and membrane-associated lysosomal enzymes, and by internalizing lysosomal enzymes that were secreted by default. These data show that MPRs are limiting in the secretory pathway of cells expressing rab9 S21N and document the importance of MPR recycling and the rab9 GTPase for efficient lysosomal enzyme delivery.

2009 ◽  
Vol 20 (5) ◽  
pp. 1388-1399 ◽  
Author(s):  
Mike Ngo ◽  
Neale D. Ridgway

Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute a large gene family that differentially localize to organellar membranes, reflecting a functional role in sterol signaling and/or transport. OSBP partitions between the endoplasmic reticulum (ER) and Golgi apparatus where it imparts sterol-dependent regulation of ceramide transport and sphingomyelin synthesis. ORP9L also is localized to the ER–Golgi, but its role in secretion and lipid transport is unknown. Here we demonstrate that ORP9L partitioning between the trans-Golgi/trans-Golgi network (TGN), and the ER is mediated by a phosphatidylinositol 4-phosphate (PI-4P)-specific PH domain and VAMP-associated protein (VAP), respectively. In vitro, both OSBP and ORP9L mediated PI-4P–dependent cholesterol transport between liposomes, suggesting their primary in vivo function is sterol transfer between the Golgi and ER. Depletion of ORP9L by RNAi caused Golgi fragmentation, inhibition of vesicular somatitus virus glycoprotein transport from the ER and accumulation of cholesterol in endosomes/lysosomes. Complete cessation of protein transport and cell growth inhibition was achieved by inducible overexpression of ORP9S, a dominant negative variant lacking the PH domain. We conclude that ORP9 maintains the integrity of the early secretory pathway by mediating transport of sterols between the ER and trans-Golgi/TGN.


1992 ◽  
Vol 119 (5) ◽  
pp. 1137-1150 ◽  
Author(s):  
Y A Ioannou ◽  
D F Bishop ◽  
R J Desnick

Human lysosomal alpha-galactosidase A (alpha-Gal A) was stably overexpressed in CHO cells and its biosynthesis and targeting were investigated. Clone AGA5.3-1000Mx, which was the highest enzyme overexpressor, produced intracellular alpha-Gal A levels of 20,900 U/mg (approximately 100 micrograms of enzyme/10(7) cells) and secreted approximately 13,000 U (or 75 micrograms/10(7) cells) per day. Ultrastructural examination of these cells revealed numerous 0.25-1.5 microns crystalline structures in dilated trans-Golgi network (TGN) and in lysosomes which stained with immunogold particles using affinity-purified anti-human alpha-Gal A antibodies. Pulse-chase studies revealed that approximately 65% of the total enzyme synthesized was secreted, while endogenous CHO lysosomal enzymes were not, indicating that the alpha-Gal A secretion was specific. The recombinant intracellular and secreted enzyme forms were normally processed and phosphorylated; the secreted enzyme had mannose-6-phosphate moieties and bound the immobilized 215-kD mannose-6-phosphate receptor (M6PR). Thus, the overexpressed enzyme's selective secretion did not result from oversaturation of the M6PR-mediated pathway or abnormal binding to the M6PR. Of note, the secreted alpha-Gal A was sulfated and the percent of enzyme sulfation decreased with increasing amplification, presumably due to the inaccessibility of the enzyme's tyrosine residues for the sulfotransferase in the TGN. Overexpression of human lysosomal alpha-N-acetylgalactosaminidase and acid sphingomyelinase in CHO cell lines also resulted in their respective selective secretion. In vitro studies revealed that purified secreted alpha-Gal A was precipitated as a function of enzyme concentration and pH, with 30% of the soluble enzyme being precipitated when 10 mg/ml of enzyme was incubated at pH 5.0. Thus, it is hypothesized that these overexpressed lysosomal enzymes are normally modified until they reach the TGN where the more acidic environment of this compartment causes the formation of soluble and particulate enzyme aggregates. A significant proportion of these enzyme aggregates are unable to bind the M6PR and are selectively secreted via the constitutive secretory pathway, while endogenous lysosomal enzymes bind the M6PRs and are transported to lysosomes.


1992 ◽  
Vol 119 (5) ◽  
pp. 1097-1116 ◽  
Author(s):  
H Plutner ◽  
H W Davidson ◽  
J Saraste ◽  
W E Balch

The glycoside digitonin was used to selectively permeabilize the plasma membrane exposing functionally and morphologically intact ER and Golgi compartments. Permeabilized cells efficiently transported vesicular stomatitis virus glycoprotein (VSV-G) through sealed, membrane-bound compartments in an ATP and cytosol dependent fashion. Transport was vectorial. VSV-G protein was first transported to punctate structures which colocalized with p58 (a putative marker for peripheral punctate pre-Golgi intermediates and the cis-Golgi network) before delivery to the medial Golgi compartments containing alpha-1,2-mannosidase II and processing of VSV-G to endoglycosidase H resistant forms. Exit from the ER was inhibited by an antibody recognizing the carboxyl-terminus of VSV-G. In contrast, VSV-G protein colocalized with p58 in the absence of Ca2+ or the presence of an antibody which inhibits the transport component NSF (SEC18). These studies demonstrate that digitonin permeabilized cells can be used to efficiently reconstitute the early secretory pathway in vitro, allowing a direct comparison of the morphological and biochemical events involved in vesicular tafficking, and identifying a key role for the p58 containing compartment in ER to Golgi transport.


1999 ◽  
Vol 112 (6) ◽  
pp. 845-854 ◽  
Author(s):  
A.C. Valdez ◽  
J.P. Cabaniols ◽  
M.J. Brown ◽  
P.A. Roche

SNARE proteins are known to play a role in regulating intracellular protein transport between donor and target membranes. This docking and fusion process involves the interaction of specific vesicle-SNAREs (e.g. VAMP) with specific cognate target-SNAREs (e.g. syntaxin and SNAP-23). Using human SNAP-23 as the bait in a yeast two-hybrid screen of a human B-lymphocyte cDNA library, we have identified the 287-amino-acid SNARE protein syntaxin 11. Like other syntaxin family members, syntaxin 11 binds to the SNARE proteins VAMP and SNAP-23 in vitro and also exists in a complex with SNAP-23 in transfected HeLa cells and in native human B lymphocytes. Unlike other syntaxin family members, no obvious transmembrane domain is present in syntaxin 11. Nevertheless, syntaxin 11 is predominantly membrane-associated and colocalizes with the mannose 6-phosphate receptor on late endosomes and the trans-Golgi network. These data suggest that syntaxin 11 is a SNARE that acts to regulate protein transport between late endosomes and the trans-Golgi network in mammalian cells.


Development ◽  
1999 ◽  
Vol 126 (22) ◽  
pp. 5137-5148 ◽  
Author(s):  
H.D. Ryoo ◽  
T. Marty ◽  
F. Casares ◽  
M. Affolter ◽  
R.S. Mann

To regulate their target genes, the Hox proteins of Drosophila often bind to DNA as heterodimers with the homeodomain protein Extradenticle (EXD). For EXD to bind DNA, it must be in the nucleus, and its nuclear localization requires a third homeodomain protein, Homothorax (HTH). Here we show that a conserved N-terminal domain of HTH directly binds to EXD in vitro, and is sufficient to induce the nuclear localization of EXD in vivo. However, mutating a key DNA binding residue in the HTH homeodomain abolishes many of its in vivo functions. HTH binds to DNA as part of a HTH/Hox/EXD trimeric complex, and we show that this complex is essential for the activation of a natural Hox target enhancer. Using a dominant negative form of HTH we provide evidence that similar complexes are important for several Hox- and exd-mediated functions in vivo. These data suggest that Hox proteins often function as part of a multiprotein complex, composed of HTH, Hox, and EXD proteins, bound to DNA.


2003 ◽  
Vol 163 (1) ◽  
pp. 57-69 ◽  
Author(s):  
Matthew Heidtman ◽  
Catherine Z. Chen ◽  
Ruth N. Collins ◽  
Charles Barlowe

Yeast Ypt1p-interacting protein (Yip1p) belongs to a conserved family of transmembrane proteins that interact with Rab GTPases. We encountered Yip1p as a constituent of ER-derived transport vesicles, leading us to hypothesize a direct role for this protein in transport through the early secretory pathway. Using a cell-free assay that recapitulates protein transport from the ER to the Golgi complex, we find that affinity-purified antibodies directed against the hydrophilic amino terminus of Yip1p potently inhibit transport. Surprisingly, inhibition is specific to the COPII-dependent budding stage. In support of this in vitro observation, strains bearing the temperature-sensitive yip1-4 allele accumulate ER membranes at a nonpermissive temperature, with no apparent accumulation of vesicle intermediates. Genetic interaction analyses of the yip1-4 mutation corroborate a function in ER budding. Finally, ordering experiments show that preincubation of ER membranes with COPII proteins decreases sensitivity to anti-Yip1p antibodies, indicating an early requirement for Yip1p in vesicle formation. We propose that Yip1p has a previously unappreciated role in COPII vesicle biogenesis.


2002 ◽  
Vol 13 (8) ◽  
pp. 2559-2570 ◽  
Author(s):  
Sidney Yu ◽  
Michael G. Roth

ARF GAP1, a 415-amino acid GTPase activating protein (GAP) for ADP-ribosylation factor (ARF) contains an amino-terminal 115-amino acid catalytic domain and no other recognizable features. Amino acids 203–334 of ARF GAP1 were sufficient to target a GFP-fusion protein to Golgi membranes in vivo. When overexpressed in COS-1 cells, this protein domain inhibited protein transport between the ER and Golgi and, in vitro, competed with the full-length ARF GAP1 for binding to membranes. Membrane binding by ARF GAP1 in vitro was increased by a factor in cytosol and this increase was inhibited by IC261, an inhibitor selective for casein kinase Iδ (CKIδ), or when cytosol was treated with antibody to CKIδ. The noncatalytic domain of ARF GAP1 was phosphorylated both in vivo and in vitro by CKI. IC261 blocked membrane binding by ARF GAP1 in vivo and inhibited protein transport in the early secretory pathway. Overexpression of a catalytically inactive CKIδ also inhibited the binding of ARF GAP1 to membranes and interfered with protein transport. Thus, a CKI isoform is required for protein traffic through the early secretory pathway and can modulate the amount of ARF GAP1 that can bind to membranes.


2011 ◽  
Vol 433 (3) ◽  
pp. 423-433 ◽  
Author(s):  
Fabian P. Vinke ◽  
Adam G. Grieve ◽  
Catherine Rabouille

The mammalian GRASPs (Golgi reassembly stacking proteins) GRASP65 and GRASP55 were first discovered more than a decade ago as factors involved in the stacking of Golgi cisternae. Since then, orthologues have been identified in many different organisms and GRASPs have been assigned new roles that may seem disconnected. In vitro, GRASPs have been shown to have the biochemical properties of Golgi stacking factors, but the jury is still out as to whether they act as such in vivo. In mammalian cells, GRASP65 and GRASP55 are required for formation of the Golgi ribbon, a structure which is fragmented in mitosis owing to the phosphorylation of a number of serine and threonine residues situated in its C-terminus. Golgi ribbon unlinking is in turn shown to be part of a mitotic checkpoint. GRASP65 also seems to be the key target of signalling events leading to re-orientation of the Golgi during cell migration and its breakdown during apoptosis. Interestingly, the Golgi ribbon is not a feature of lower eukaryotes, yet a GRASP homologue is present in the genome of Encephalitozoon cuniculi, suggesting they have other roles. GRASPs have no identified function in bulk anterograde protein transport along the secretory pathway, but some cargo-specific trafficking roles for GRASPs have been discovered. Furthermore, GRASP orthologues have recently been shown to mediate the unconventional secretion of the cytoplasmic proteins AcbA/Acb1, in both Dictyostelium discoideum and yeast, and the Golgi bypass of a number of transmembrane proteins during Drosophila development. In the present paper, we review the multiple roles of GRASPs.


1991 ◽  
Vol 114 (4) ◽  
pp. 671-679 ◽  
Author(s):  
T Oka ◽  
S Nishikawa ◽  
A Nakano

In the yeast secretory pathway, two genes SEC12 and SAR1, which encode a 70-kD integral membrane protein and a 21-kD GTP-binding protein, respectively, cooperate in protein transport from the ER to the Golgi apparatus. In vivo, the elevation of the SAR1 dosage suppresses temperature sensitivity of the sec12 mutant. In this paper, we show cell-free reconstitution of the ER-to-Golgi transport that depends on both of these gene products. First, the membranes from the sec12 mutant cells reproduce temperature sensitivity in the in vitro ER-to-Golgi transport reaction. Furthermore, the addition of the Sar1 protein completely suppresses this temperature-sensitive defect of the sec12 membranes. The analysis of Sar1p partially purified by E. coli expression suggests that GTP hydrolysis is essential for Sar1p to execute its function.


1994 ◽  
Vol 126 (2) ◽  
pp. 343-352 ◽  
Author(s):  
T Ruscetti ◽  
J A Cardelli ◽  
M L Niswonger ◽  
T J O'Halloran

The clathrin heavy chain is a major component of clathrin-coated vesicles that function in selective membrane traffic in eukaryotic cells. We disrupted the clathrin heavy chain gene (chcA) in Dictyostelium discoideum to generate a stable clathrin heavy chain-deficient cell line. Measurement of pinocytosis in the clathrin-minus mutant revealed a four-to five-fold deficiency in the internalization of fluid-phase markers. Once internalized, these markers recycled to the cell surface of mutant cells at wild-type rates. We also explored the involvement of clathrin heavy chain in the trafficking of lysosomal enzymes. Pulse chase analysis revealed that clathrin-minus cells processed most alpha-mannosidase to mature forms, however, approximately 20-25% of the precursor molecules remained uncleaved, were missorted, and were rapidly secreted by the constitutive secretory pathway. The remaining intracellular alpha-mannosidase was successfully targeted to mature lysosomes. Standard secretion assays showed that the rate of secretion of alpha-mannosidase was significantly less in clathrin-minus cells compared to control cells in growth medium. Interestingly, the secretion rates of another lysosomal enzyme, acid phosphatase, were similar in clathrin-minus and wild-type cells. Like wild-type cells, clathrin-minus mutants responded to starvation conditions with increased lysosomal enzyme secretion. Our study of the mutant cells provide in vivo evidence for roles for the clathrin heavy chain in (a) the internalization of fluid from the plasma membrane; (b) sorting of hydrolase precursors from the constitutive secretory pathway to the lysosomal pathway; and (c) secretion of mature hydrolases from lysosomes to the extracellular space.


Sign in / Sign up

Export Citation Format

Share Document