scholarly journals Transport and intracellular distribution of MHC class II molecules and associated invariant chain in normal and antigen-processing mutant cell lines.

1994 ◽  
Vol 125 (6) ◽  
pp. 1225-1237 ◽  
Author(s):  
J M Riberdy ◽  
R R Avva ◽  
H J Geuze ◽  
P Cresswell

We have compared the intracellular transport and subcellular distribution of MHC class II-invariant chain complexes in a wild-type HLA-DR3 homozygous cell line and a mutant cell line, T2.DR3. The latter has a defect in antigen processing and accumulates HLA-DR3 molecules associated with an invariant chain-derived peptide (CLIP) rather than the normal complement of peptides derived from endocytosed proteins. We find that in the wild-type cells, CLIP is transiently associated with HLA-DR3 molecules, suggesting that the peptide is a normal class II-associated intermediate generated during proteolysis of the invariant chain. In the mutant cell line proteolysis of the invariant chain is less efficient, and HLA-DR3/CLIP complexes are generated much more slowly. Examination of the mutant cell line by immunoelectronmicroscopy shows that class II-invariant chain complexes accumulate intracellularly in large acidic vesicles which contain lysosomal markers, including beta-hexosaminidase, cathepsin D, and the lysosomal membrane protein CD63. The markers in these vesicles are identical to those seen in the class II-containing vesicles (MIICs) seen in the wild-type cells but the morphology is drastically different. The vesicles in the mutant cells are endocytic, as measured by the internalization of BSA-gold conjugates. The implication of these findings for antigen processing in general and the nature of the mutation in particular are discussed.

Nature ◽  
1992 ◽  
Vol 360 (6403) ◽  
pp. 474-477 ◽  
Author(s):  
Janice M. Riberdy ◽  
John R. Newcomb ◽  
Michael J. Surman ◽  
James A. Barbosat ◽  
Peter Cresswell

1992 ◽  
Vol 57 (0) ◽  
pp. 571-577 ◽  
Author(s):  
E.-M. Click ◽  
K.S. Anderson ◽  
M.J. Androlewicz ◽  
M.L. Wei ◽  
P. Cresswell

2004 ◽  
Vol 3 (2) ◽  
pp. 255-263 ◽  
Author(s):  
Alvaro Acosta-Serrano ◽  
Jessica O'Rear ◽  
George Quellhorst ◽  
Soo Hee Lee ◽  
Kuo-Yuan Hwa ◽  
...  

ABSTRACT Concanavalin A (ConA) kills the procyclic (insect) form of Trypanosoma brucei by binding to its major surface glycoprotein, procyclin. We previously isolated a mutant cell line, ConA 1-1, that is less agglutinated and more resistant to ConA killing than are wild-type (WT) cells. Subsequently we found that the ConA resistance phenotype in this mutant is due to the fact that the procyclin either has no N-glycan or has an N-glycan with an altered structure. Here we demonstrate that the alteration in procyclin N-glycosylation correlates with two defects in the N-linked oligosaccharide biosynthetic pathway. First, ConA 1-1 has a defect in activity of polyprenol reductase, an enzyme involved in synthesis of dolichol. Metabolic incorporation of [3H]mevalonate showed that ConA 1-1 synthesizes equal amounts of dolichol and polyprenol, whereas WT cells make predominantly dolichol. Second, we found that ConA 1-1 synthesizes and accumulates an oligosaccharide lipid (OSL) precursor that is smaller in size than that from WT cells. The glycan of OSL in WT cells is apparently Man9GlcNAc2, whereas that from ConA 1-1 is Man7GlcNAc2. The smaller OSL glycan in the ConA 1-1 explains how some procyclin polypeptides bear a Man4GlcNAc2 modified with a terminal N-acetyllactosamine group, which is poorly recognized by ConA.


1991 ◽  
Vol 11 (2) ◽  
pp. 1133-1137 ◽  
Author(s):  
Y You ◽  
K Aufderheide ◽  
J Morand ◽  
K Rodkey ◽  
J Forney

A previously isolated mutant cell line called d48 contains a complete copy of the A surface antigen gene in the micronuclear genome, but the gene is not incorporated into the macronucleus. Previous experiments have shown that a cytoplasmic factor made in the wild-type macronucleus can rescue the mutant. Recently, S. Koizumi and S. Kobayashi (Mol. Cell. Biol. 9:4398-4401, 1989) observed that injection of a plasmid containing the A gene into the d48 macronucleus rescued the cell line after autogamy. It is shown here that an 8.8-kb EcoRI fragment containing only a portion of the A gene coding region is sufficient for the rescue of d48. The inability of other A gene fragments to rescue the mutant shows that this effect is dependent upon specific Paramecium DNA sequences. Rescue results in restoration of the wild-type DNA restriction pattern in the macronucleus. These results are consistent with a model in which the macronuclear A locus normally makes an additional gene product that is required for correct processing of the micronuclear copy of the A gene.


1991 ◽  
Vol 11 (2) ◽  
pp. 1133-1137
Author(s):  
Y You ◽  
K Aufderheide ◽  
J Morand ◽  
K Rodkey ◽  
J Forney

A previously isolated mutant cell line called d48 contains a complete copy of the A surface antigen gene in the micronuclear genome, but the gene is not incorporated into the macronucleus. Previous experiments have shown that a cytoplasmic factor made in the wild-type macronucleus can rescue the mutant. Recently, S. Koizumi and S. Kobayashi (Mol. Cell. Biol. 9:4398-4401, 1989) observed that injection of a plasmid containing the A gene into the d48 macronucleus rescued the cell line after autogamy. It is shown here that an 8.8-kb EcoRI fragment containing only a portion of the A gene coding region is sufficient for the rescue of d48. The inability of other A gene fragments to rescue the mutant shows that this effect is dependent upon specific Paramecium DNA sequences. Rescue results in restoration of the wild-type DNA restriction pattern in the macronucleus. These results are consistent with a model in which the macronuclear A locus normally makes an additional gene product that is required for correct processing of the micronuclear copy of the A gene.


1992 ◽  
Vol 103 (3) ◽  
pp. 811-822 ◽  
Author(s):  
S. Zachgo ◽  
B. Dobberstein ◽  
G. Griffiths

Invariant chain (Ii) associated with MHC class II molecule is processed proteolytically via several distinct intermediates during its intracellular transport through endosomal compartments. Leupeptin added to the culture medium blocks processing of Ii, prevents its dissociation from the class II molecules and leads to an intracellular accumulation of a 22 kDa intermediate form of Ii. We show here that leupeptin has a very general effect on protein transport in the endocytic pathway. When added to Mel Juso cells leupeptin reduces the transport of endocytosed material from multivesicular body-like, endosome carrier vesicles (ECV) to the prelysosomal compartment (late endosome) and leads to a concomitant increase in the number of ECV. Our results argue that one effect of leupeptin, related to antigen processing and presentation, is to block transport of antigen and/or MHC class II molecules to prelysosomal compartments.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 877-877
Author(s):  
Tracie A. Goldberg ◽  
Sharon Singh ◽  
Adrianna Henson ◽  
Abdallah Nihrane ◽  
Jeffrey Michael Lipton ◽  
...  

Abstract Abstract 877 Background: Diamond Blackfan anemia (DBA), a rare inherited bone marrow failure syndrome, is characterized mainly by erythroid hypoplasia but is also associated with congenital anomalies, short stature and cancer predisposition. DBA has been shown to result from haploinsufficiency of ribosomal proteins (RPS17, RPS19, RPS24, RPL5, RPL11, RPL35a), which renders erythroid precursors highly sensitive to death by apoptosis. The ontogeny and basis of the hematopoietic defect are unclear. The typical presentation of anemia occurs at 2–3 months of age, although there are rare cases of hydrops fetalis. Marked phenotypic variations exist among members of the same family and also between subsets of patients with different mutations. Methods: We studied in vitro hematopoietic differentiation of two murine embryonic stem (ES) cell lines: YHC074, Rps19 mutant with the pGT0Lxf gene trap vector inserted in intron 3 of Rps19, and D050B12, Rpl5 mutant with the FlipRosaβgeo gene trap vector inserted in intron 3 of Rpl5. Wild-type parental cell lines were used as controls. For primary differentiation and generation of embryoid bodies (EBs), ES cells were cultured in serum-supplemented methylcellulose medium containing stem cell factor (SCF). After 7 days, the cultures were fed with medium containing SCF, interleukin-3 (IL-3), IL-6 and erythropoietin (epo). EBs were scored on day 6 for total quantity, then again on day 12 for hematopoietic percentage. For secondary differentiation into definitive hematopoietic colonies, day 10 EBs were disrupted, and individual cells were suspended in serum-supplemented methylcellulose medium containing SCF, IL-3, Il-6 and epo. Definitive hematopoietic colonies were counted on day 10. Primitive erythropoiesis differentiation assays were performed by disruption of day 4 EBs, followed by suspension of cells in methylcellulose medium containing plasma-derived serum and epo. Primitive erythropoiesis colonies were counted on day 7. Results: We confirmed haploinsufficient expression (∼50% wild type) of Rps19 in YHC074 and Rpl5 protein in D050B12 by Western blot analysis. By polysome analysis, we found a selective reduction in the 40S subunit peak in the Rps19 mutant cell line and in the 60S subunit peak in the Rpl5 mutant cell line. Both types of mutants produced a significantly decreased number of EBs, particularly hematopoietic EBs, compared to parental cell lines. EB size was not compromised in the Rps19 mutant cell line, while Rpl5 mutant ES cells produced significantly smaller EBs, compared to its parental cells. Upon differentiation of cells to definitive hematopoietic colonies, both Rps19 and Rpl5 mutants showed a similar reduction in the erythroid (CFU-E and BFU-E) to myeloid (CFU-GM) colony formation ratio. Primitive erythropoiesis was conserved in the Rps19 mutant (Figure 1. 1, top panel). By contrast, the Rpl5 mutant demonstrated a severe primitive erythropoiesis defect (Figure 1. 1, bottom panel). For confirmation of these results in an isogenic background, we stably transfected YHC074 ES cells with a vector expressing wild-type Rps19 cDNA and the puromycin resistance gene. Several resistant clones expressed Rps19 at the wild-type level. Upon differentiation of a chosen clone, we demonstrated correction of the EB defect and the definitive erythropoiesis defect, suggesting that the hematopoietic differentiation defects seen are directly related to levels of Rps19 protein. We are currently working on correction of the D050B12 ES cells in a similar manner. Conclusion: Murine ES cell lines with Rps19 and Rpl5 mutations exhibit ribosomal protein haploinsufficiency, demonstrate respective ribosome assembly defects, and recapitulate the major DBA hematopoietic differentiation defect. In addition, a unique defect in primitive erythropoiesis in the Rpl5 mutant ES cell line suggests that the Rpl5 mutation in this mouse strain affects early-stage embryogenesis, a finding which may offer insight into the ontogeny of DBA hematopoiesis and may offer an explanation for phenotypic variations seen in patients (such as hydrops fetalis). Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2147-2147
Author(s):  
Caisheng Lu ◽  
Huihui Ma ◽  
Liangsong Song ◽  
Shirong Li ◽  
Suzanne Lentzsch ◽  
...  

Abstract IFNγ signaling plays a critical role in the pathogenesis of GVHD. In this study, we observed that LPS-maturated bone marrow-derived dendritic cells (BMDCs) lacking IFNγ receptor (IFNγR, GRKO) or signal transducer and activator of transcription 1 (STAT1KO) had increased expression of major histocompatibility complex class II (MHC II), CD86, CD80, and enhanced allo-stimulatory capacity. This was further confirmed using fully MHC-mismatched bone marrow transplantation (BMT) studies. APC of GRKO or STAT1KO recipients had increased MHC II expression, which was associated with enhanced activation and expansion of donor CD4 and CD8 T cells and subsequently accelerated GVHD mortality compared to wild type (WT) controls. This increased GVHD mortality and increased MHC II expression on host APCs was further observed in the absence of recipient conditioning in the B6→CB6F1 mouse model. This was associated with increased presentation of host derived endogenous Eα52-68 peptide via I-Ab on recipient CD11c+ cells as detected by staining with the YA-e antibody. Furthermore, we could demonstrate that absence of IFNγR in BMDC promotes presentation Eα52-68 peptide and subsequently elicits pronounced activation, expansion and Th1 differentiation of TEa-TCR-tg CD4 T cells which recognize the Eα52-68 peptide presented by I-Ab. Next, we assessed the impact of this pathway on presentation of exogenous antigens. Interestingly, when lysate prepared from BALB/c splenocytes was incubated with BMDCs from B6 mice, Y-Ae expression on STAT1-/- BMDCs was significantly reduced compared to wild type BMDCs allowing us to hypothesize that IFNγ/STAT1 signaling may play an important role in promoting presentation of exogenous antigen while suppressing presentation of endogenous antigen. To further confirm this hypothesis, we used ovalbumin (OVA) as a second model antigen. To assess the impact of IFNγ/STAT1 signaling on presentation of exogenous antigen, WT, GRKO or STAT1KO BMDC were directly pulsed with OVA. To address the role in endogenous antigen presentation we studied act-mOVA-transgenic wildtype, act-mOVA.GRKO or act-mOVA.STAT1KO BMDCs. Transgenic OT-II CD4 T cells express a TCR specific for the OVA peptide 323-33 presented by I-Ab. The proliferation/activation of OT II T cells was monitored by flow cytometer as readout for effective Ag presentation. Our data demonstrated that IFNγR- or STAT1-deficient BMDCs loaded with exogenous intact OVA protein were compromised in promoting OT II proliferation. In contrast, responder OT-II CD4 T cells proliferated much more vigorously when stimulated with IFNγR/STAT1-deficient m-Act-OVA BMDCs compared to controls. We further observed significantly impaired OT-II cell proliferation in IFNγR or STAT1-deficient mice immunized with OVA indicating impaired presentation of exogenous antigens. However, OT-II CD4 T cells injected into lethally irradiated act-mOVA.STAT1KO transgenic mice proliferated more robustly and displayed increased Th1 differentiation compared to control mice when tested 3 days after OT II administration. We next started to assess several key factors (Ii [invariant chain, CD74], Cathepsin S [CTSS], H2-M, CIITA and MARCH1), known to be involved in the process of MHC class II antigen presentation and MHC II expression. We found retention of Invariant chain (CD74) expression as well as reduced CTSS and H2M expression in GRKO or STAT1KO BMDC following LPS-maturation. Furthermore, we observed significantly reduced lysosome formation/function in STAT1KO BMDCs compared to wild type BMDCs after LPS maturation. These data suggest that exogenous protein-derived peptide exchange in the MHCII compartment (MIIC) is impaired in STAT1KO BMDCs. Immature and LPS-maturated STAT1-/-BMDCs had significantly increased autophagy, which could explain enhanced endogenous Ag presentation since autophagy has been demonstrated to be critical in MHC II Ag presentation of cytoplasmic constituents. Finally, we found evidence of enhanced MHC II synthesis as supported by increased CIITA mRNA expression and conversely reduced MHC II degradation as indicated by reduced MARCH1 expression. In summary our data suggest that absence of IFNγR/STAT1 signaling in DC leads to abnormal surface MHC II turnover, promotes presentation of endogenous peptides and concomitantly impairs processing and presentation of exogenous antigens. Disclosures Lentzsch: BMS: Consultancy; Foundation One: Consultancy; Celgene: Consultancy, Honoraria.


1984 ◽  
Vol 4 (7) ◽  
pp. 1320-1325
Author(s):  
P C Ghosh ◽  
R B Wellner ◽  
H C Wu

By osmotic lysis of pinocytic vesicles we were able to inject ricin or ricin A chain directly into the cytosol of Chinese hamster ovary cells. The lag time of 1 to 2 h before the onset of the inhibition of protein synthesis by ricin in intact cells was reduced to 15 to 30 min by this method. Preincubation of cells with a low concentration of nigericin, which was shown earlier to enhance the cytotoxicity of ricin, had no effect under this condition. Direct transfer of either intact ricin or the ricin A subunit by osmotic lysis of pinocytic vesicles into the cytosol of the ricin-resistant CHO mutant cell line 4-10 rendered the mutant 4-10 cells as sensitive to ricin as the CHO pro wild-type cells. Both the lag time and the rate of inhibition of protein synthesis in the wild-type and mutant cell lines after the introduction of ricin by osmotic lysis of pinocytic vesicles were the same. These results indicate that injection of ricin into the cytosol by osmotic lysis of pinosomes bypasses the internalization defect in the mutant cell line.


Sign in / Sign up

Export Citation Format

Share Document