scholarly journals The oligomerization reaction of the Semliki Forest virus membrane protein subunits.

1995 ◽  
Vol 128 (3) ◽  
pp. 283-291 ◽  
Author(s):  
B U Barth ◽  
J M Wahlberg ◽  
H Garoff

The Semliki Forest virus (SFV) spike is composed of three copies of a membrane protein heterodimer. The two subunits of this heterodimer (p62 and E1) are synthesized sequentially from a common mRNA together with the capsid (C) in the order C-p62-E1. In this work heterodimerization of the spike proteins has been studied in BHK 21 cells. The results indicate that: (a) the polyprotein is cotranslationally cleaved into individual chains; (b) the two membrane protein subunits are initially not associated with each other in the endoplasmic reticulum (ER); (c) heterodimerization occurs predominantly between subunits that originate from the same translation product (heterodimerization in cis); (d) the kinetics of subunit association are very fast (t1/2 = 4 min); and (e) this heterodimerization is highly efficient. To explain the cis-directed heterodimerization reaction we suggest that the p62 protein, which is made before E1 during 26S mRNA translation, is retained at its translocation site until also the E1 chain has been synthesized and translocated at this same site. The mechanism for p62 retention could either be that the p62 anchor sequence cannot diffuse out from an "active" translocation site or that the p62 protein is complexed with a protein folding facilitating machinery that is physically linked to the translocation apparatus.

1984 ◽  
Vol 98 (6) ◽  
pp. 2142-2147 ◽  
Author(s):  
P Quinn ◽  
G Griffiths ◽  
G Warren

Using two independent methods, incorporation of radioactive amino-acid and quantitative immunoblotting, we have determined that the rate of synthesis of each of the Semliki Forest virus (SFV) proteins in infected baby hamster kidney (BHK) cells is 1.2 X 10(5) copies/cell/min. Given the absolute surface areas of the endoplasmic reticulum and Golgi complex presented in the companion paper (Griffiths, G., G. Warren, P. Quinn , O. Mathieu - Costello , and A. Hoppeler , 1984, J. Cell Biol. 98:2133-2141), and the approximate time spent in these organelles during their passage to the plasma membrane (Green J., G. Griffiths, D. Louvard , P. Quinn , and G. Warren 1981, J. Mol. Biol. 152:663-698), the mean density of each viral protein in these organelles can be calculated to be 90 and 750 molecules/micron 2 membrane, respectively. In contrast, we have determined that the density of total endogenous integral membrane proteins in these organelles is approximately 30,000 molecules/micron 2 so that the spike proteins constitute only 0.28 and 2.3% of total membrane protein in the endoplasmic reticulum and Golgi, respectively. Quantitative immunoblotting was used to give direct estimates of the concentrations of one of the viral membrane protein precursors (E1) in subcellular fractions; these agreed closely with the calculated values. The data are discussed with respect to the sorting of transported proteins from those endogenous to the intracellular membranes.


2003 ◽  
Vol 77 (12) ◽  
pp. 6676-6682 ◽  
Author(s):  
Helena Andersson ◽  
Henrik Garoff

ABSTRACT The Semliki Forest virus (SFV) spike subunits p62 and E1 are made from a common coding unit in the order p62-E1. The proteins are separated by the host signal peptidase upon translocation into the endoplasmic reticulum (ER). Shortly thereafter, p62 and E1 form heterodimers. Heterodimerization preferentially occurs between subunits derived from the same translation product, so-called cis heterodimerization. As the p62 protein has the capacity to leave the ER in the absence of E1, it has been postulated that there exists a retention mechanism for the p62 protein, putatively at or near the translocon, in the ER in order to promote cis heterodimerization (B. U. Barth and H. Garoff, J. Virol. 71:7857-7865, 1997). Here we show that there exists such a mechanism, that it is at least in part mediated by the ER chaperones calnexin and calreticulin, and that the retention is important for efficient cis heterodimerization.


2011 ◽  
Vol 25 (S1) ◽  
Author(s):  
Reid Gilmore ◽  
Elisabet C Mandon ◽  
Cameron Butova ◽  
Steven F Trueman

2019 ◽  
Vol 476 (21) ◽  
pp. 3241-3260
Author(s):  
Sindhu Wisesa ◽  
Yasunori Yamamoto ◽  
Toshiaki Sakisaka

The tubular network of the endoplasmic reticulum (ER) is formed by connecting ER tubules through three-way junctions. Two classes of the conserved ER membrane proteins, atlastins and lunapark, have been shown to reside at the three-way junctions so far and be involved in the generation and stabilization of the three-way junctions. In this study, we report TMCC3 (transmembrane and coiled-coil domain family 3), a member of the TEX28 family, as another ER membrane protein that resides at the three-way junctions in mammalian cells. When the TEX28 family members were transfected into U2OS cells, TMCC3 specifically localized at the three-way junctions in the peripheral ER. TMCC3 bound to atlastins through the C-terminal transmembrane domains. A TMCC3 mutant lacking the N-terminal coiled-coil domain abolished localization to the three-way junctions, suggesting that TMCC3 localized independently of binding to atlastins. TMCC3 knockdown caused a decrease in the number of three-way junctions and expansion of ER sheets, leading to a reduction of the tubular ER network in U2OS cells. The TMCC3 knockdown phenotype was partially rescued by the overexpression of atlastin-2, suggesting that TMCC3 knockdown would decrease the activity of atlastins. These results indicate that TMCC3 localizes at the three-way junctions for the proper tubular ER network.


Sign in / Sign up

Export Citation Format

Share Document