scholarly journals Rab8 promotes polarized membrane transport through reorganization of actin and microtubules in fibroblasts.

1996 ◽  
Vol 135 (1) ◽  
pp. 153-167 ◽  
Author(s):  
J Peränen ◽  
P Auvinen ◽  
H Virta ◽  
R Wepf ◽  
K Simons

Rab8 is a small Ras-like GTPase that regulates polarized membrane transport to the basolateral membrane in epithelial cells and to the dendrites in neurons. It has recently been demonstrated that fibroblasts sort newly synthesized proteins into two different pathways for delivery to the cell surface that are equivalent to the apical and the basolateral post-Golgi routes in epithelial cells (Yoshimori, T., P. Keller, M.G. Roth, and K. Simons. 1996. J. Cell Biol. 133:247-256). To determine the role of Rab8 in fibroblasts, we used both transient expression systems and stable cell lines expressing mutant or wild-type (wt) Rab8. A dramatic change in cell morphology occurred in BHK cells expressing both the wt Rab8 and the activated form of the GTPase, the Rab8Q67L mutant. These cells formed processes as a result of a reorganization of both their actin filaments and microtubules. Newly synthesized vesicular stomatitis virus G glycoprotein, a basolateral marker protein in MDCK cells, was preferentially delivered into these cell outgrowths. Based on these findings, we propose that Rab8 provides a link between the machinery responsible for the formation of cell protrusions and polarized biosynthetic membrane traffic.

2002 ◽  
Vol 76 (8) ◽  
pp. 4103-4107 ◽  
Author(s):  
Gert Zimmer ◽  
Klaus-Peter Zimmer ◽  
Ina Trotz ◽  
Georg Herrler

ABSTRACT In polarized epithelial cells, the vesicular stomatitis virus glycoprotein is segregated to the basolateral plasma membrane, where budding of the virus takes place. We have generated recombinant viruses expressing mutant glycoproteins without the basolateral-membrane-targeting signal in the cytoplasmic domain. Though about 50% of the mutant glycoproteins were found at the apical plasma membranes of infected MDCK cells, the virus was still predominantly released at the basolateral membranes, indicating that factors other than the glycoprotein determine the site of virus budding.


1988 ◽  
Vol 107 (5) ◽  
pp. 1707-1715 ◽  
Author(s):  
J E Bergmann ◽  
P J Fusco

Using monoclonal antibodies and indirect immunofluorescence microscopy, we investigated the distribution of the M protein in situ in vesicular stomatitis virus-(VSV) infected MDCK cells. M protein was observed free in the cytoplasm and associated with the plasma membrane. Using the ts045 mutant of VSV to uncouple the synthesis and transport of the VSV G protein we demonstrated that this distribution was not related to the presence of G protein on the cell surface. Sections of epon-embedded infected cells labeled with antibody to the M protein and processed for indirect horseradish peroxidase immunocytochemistry revealed that the M protein was associated specifically with the basolateral plasma membrane. The G and M proteins of VSV have therefore evolved features which bring them independently to the basolateral membrane of polarized epithelial cells and allow virus to bud specifically from that membrane.


1999 ◽  
Vol 106 (2-3) ◽  
pp. 229-235 ◽  
Author(s):  
Masahiro Okuda ◽  
Katsuyasu Tsuda ◽  
Koichi Masaki ◽  
Yukiya Hashimoto ◽  
Ken-ichi Inui

2018 ◽  
Vol 315 (2) ◽  
pp. C258-C276 ◽  
Author(s):  
Rainelli Koumangoye ◽  
Salma Omer ◽  
Eric Delpire

We recently reported the case of a young patient with multisystem failure carrying a de novo mutation in SLC12A2, the gene encoding the Na-K-2Cl cotransporter-1 (NKCC1). Heterologous expression studies in nonepithelial cells failed to demonstrate dominant-negative effects. In this study, we examined expression of the mutant cotransporter in epithelial cells. Using Madin-Darby canine kidney (MDCK) cells grown on glass coverslips, permeabilized support, and Matrigel, we show that the fluorescently tagged mutant cotransporter is expressed in cytoplasm and at the apical membrane and affects epithelium integrity. Expression of the mutant transporter at the apical membrane also results in the mislocalization of some of the wild-type transporter to the apical membrane. This mistargeting is specific to NKCC1 as the Na+-K+-ATPase remains localized on the basolateral membrane. To assess transporter localization in vivo, we created a mouse model using CRISPR/cas9 that reproduces the 11 bp deletion in exon 22 of Slc12a2. Although the mice do not display an overt phenotype, we show that the colon and salivary gland expresses wild-type NKCC1 abundantly at the apical pole, confirming the data obtained in cultured epithelial cells. Enough cotransporter must remain, however, on the basolateral membrane to participate in saliva secretion, as no significant decrease in saliva production was observed in the mutant mice.


2001 ◽  
Vol 12 (12) ◽  
pp. 3797-3807 ◽  
Author(s):  
Howard H. Gu ◽  
Xiaohong Wu ◽  
Bruno Giros ◽  
Marc G. Caron ◽  
Michael J. Caplan ◽  
...  

When expressed in epithelial cells, dopamine transporter (DAT) was detected predominantly in the apical plasma membrane, whereas norepinephrine transporter (NET) was found in the basolateral membrane, despite 67% overall amino acid sequence identity. To identify possible localization signals responsible for this difference, DAT–NET chimeras were expressed in MDCK cells and localized by immunocytochemistry and transport assays. The results suggested that localization of these transporters in MDCK cells depends on their highly divergent NH2-terminal regions. Deletion of the first 58 amino acids of DAT (preceding TM1) did not change its apical localization. However, the replacement of that region with corresponding sequence from NET resulted in localization of the chimeric protein to the basolateral membrane, suggesting that the NH2-terminus of NET, which contains two dileucine motifs, contains a basolateral localization signal. Mutation of these leucines to alanines in the context of a basolaterally localized NET/DAT chimera restored transporter localization to the apical membrane, indicating that the dileucine motifs are critical to the basolateral localization signal embodied within the NET NH2-terminal region. However, the same mutation in the context of wild-type NET did not disrupt basolateral localization, indicating the presence of additional signals in NET directing its basolateral localization within the plasma membrane.


1990 ◽  
Vol 64 (4) ◽  
pp. 1716-1725 ◽  
Author(s):  
D Blondel ◽  
G G Harmison ◽  
M Schubert

2005 ◽  
Vol 86 (5) ◽  
pp. 1455-1465 ◽  
Author(s):  
Andrea Hanika ◽  
Birthe Larisch ◽  
Eike Steinmann ◽  
Christel Schwegmann-Weßels ◽  
Georg Herrler ◽  
...  

Influenza C virus contains two envelope glycoproteins: CM2, a putative ion channel protein; and HEF, a unique multifunctional protein that performs receptor-binding, receptor-destroying and fusion activities. Here, it is demonstrated that expression of HEF is sufficient to pseudotype replication-incompetent vesicular stomatitis virus (VSV) that lacks the VSV glycoprotein (G) gene. The pseudotyped virus showed characteristic features of influenza C virus with respect to proteolytic activation, receptor usage and cell tropism. Chimeric glycoproteins composed of HEF ectodomain and VSV-G C-terminal domains were efficiently incorporated into VSV particles and showed receptor-binding and receptor-destroying activities but, unlike authentic HEF, did not mediate efficient infection, probably because of impaired fusion activity. HEF-pseudotyped VSV efficiently infected polarized Madin–Darby canine kidney cells via the apical plasma membrane, whereas entry of VSV-G-complemented virus was restricted to the basolateral membrane. These findings suggest that pseudotyping of viral vectors with HEF might be useful for efficient apical gene transfer into polarized epithelial cells and for targeting cells that express 9-O-acetylated sialic acids.


2018 ◽  
Vol 315 (4) ◽  
pp. G433-G442 ◽  
Author(s):  
Kayte A. Jenkin ◽  
Peijian He ◽  
C. Chris Yun

Lysophosphatidic acid (LPA) is a bioactive lipid molecule, which regulates a broad range of pathophysiological processes. Recent studies have demonstrated that LPA modulates electrolyte flux in the intestine, and its potential as an antidiarrheal agent has been suggested. Of six LPA receptors, LPA5 is highly expressed in the intestine. Recent studies by our group have demonstrated activation of Na+/H+ exchanger 3 (NHE3) by LPA5. However, much of what has been elucidated was achieved using colonic cell lines that were transfected to express LPA5. In the current study, we engineered a mouse that lacks LPA5 in intestinal epithelial cells, Lpar5ΔIEC, and investigated the role of LPA5 in NHE3 regulation and fluid absorption in vivo. The intestine of Lpar5ΔIEC mice appeared morphologically normal, and the stool frequency and fecal water content were unchanged compared with wild-type mice. Basal rates of NHE3 activity and fluid absorption and total NHE3 expression were not changed in Lpar5ΔIEC mice. However, LPA did not activate NHE3 activity or fluid absorption in Lpar5ΔIEC mice, providing direct evidence for the regulatory role of LPA5. NHE3 activation involves trafficking of NHE3 from the terminal web to microvilli, and this mobilization of NHE3 by LPA was abolished in Lpar5ΔIEC mice. Dysregulation of NHE3 was specific to LPA, and insulin and cholera toxin were able to stimulate and inhibit NHE3, respectively, in both wild-type and Lpar5ΔIEC mice. The current study for the first time demonstrates the necessity of LPA5 in LPA-mediated stimulation of NHE3 in vivo. NEW & NOTEWORTHY This study is the first to assess the role of LPA5 in NHE3 regulation and fluid absorption in vivo using a mouse that lacks LPA5 in intestinal epithelial cells, Lpar5ΔIEC. Basal rates of NHE3 activity and fluid absorption, and total NHE3 expression were not changed in Lpar5ΔIEC mice. However, LPA did not activate NHE3 activity or fluid absorption in Lpar5ΔIEC mice, providing direct evidence for the regulatory role of LPA5.


Sign in / Sign up

Export Citation Format

Share Document