scholarly journals Cell adhesion molecules NgCAM and axonin-1 form heterodimers in the neuronal membrane and cooperate in neurite outgrowth promotion.

1996 ◽  
Vol 135 (6) ◽  
pp. 1593-1607 ◽  
Author(s):  
A Buchstaller ◽  
S Kunz ◽  
P Berger ◽  
B Kunz ◽  
U Ziegler ◽  
...  

The axonal surface glycoproteins neuronglia cell adhesion molecule (NgCAM) and axonin-1 promote cell-cell adhesion, neurite outgrowth and fasciculation, and are involved in growth cone guidance. A direct binding between NgCAM and axonin-1 has been demonstrated using isolated molecules conjugated to the surface of fluorescent microspheres. By expressing NgCAM and axonin-1 in myeloma cells and performing cell aggregation assays, we found that NgCAM and axonin-1 cannot bind when present on the surface of different cells. In contrast, the cocapping of axonin-1 upon antibody-induced capping of NgCAM on the surface of CV-1 cells coexpressing NgCAM and axonin-1 and the selective chemical cross-linking of the two molecules in low density cultures of dorsal root ganglia neurons indicated a specific and direct binding of axonin-1 and Ng-CAM in the plane of the same membrane. Suppression of the axonin-1 translation by antisense oligonucleotides prevented neurite outgrowth in dissociated dorsal root ganglia neurons cultured on an NgCAM substratum, indicating that neurite outgrowth on NgCAM substratum requires axonin-1. Based on these and previous results, which implicated NgCAM as the neuronal receptor involved in neurite outgrowth on NgCAM substratum, we concluded that neurite outgrowth on an NgCAM substratum depends on two essential interactions of growth cone NgCAM: a trans-interaction with substratum NgCAM and a cis-interaction with axonin-1 residing in the same growth cone membrane.

1991 ◽  
Vol 115 (4) ◽  
pp. 1113-1126 ◽  
Author(s):  
T B Kuhn ◽  
E T Stoeckli ◽  
M A Condrau ◽  
F G Rathjen ◽  
P Sonderegger

Axonin-1 is an axon-associated cell adhesion molecule with dualistic expression, one form being glycophosphatidylinositol-anchored to the axonal membrane, the other secreted from axons in a soluble form. When presented as a substratum for neuronal cultures it strongly promotes neurite outgrowth from chicken embryonic dorsal root ganglia neurons. In this study, the axon-associated cell adhesion molecule G4, which is identical with Ng-CAM and 8D9, and homologous or closely related to L1 of the mouse and NILE of the rat, was investigated with respect to a receptor function for axonin-1. Using fluorescent microspheres with covalently coupled axonin-1 or L1(G4) at their surface we showed that these proteins bind to each other. Within the sensitivity of this microsphere assay, no interaction of axonin-1 with itself could be detected. Axonin-1-coated microspheres also bound to the neurites of cultured dorsal root ganglia neurons. This interaction was exclusively mediated by L1(G4), as indicated by complete binding suppression by monovalent anti-L1(G4) antibodies. The interaction between neuritic L1(G4) and immobilized axonin-1 was found to mediate the promotion of neurite growth on axonin-1, as evidenced by the virtually complete arrest of neurite outgrowth in the presence of anti-L1(G4) antibodies. Convincing evidence has recently been presented that neurite growth on L1(8D9) is mediated by the homophilic binding of neuritic L1(G4) (1989. Neuron. 2: 1597-1603). Thus, both L1(G4)- and axonin-1-expressing axons may serve as "substrate pathways" for the guidance of following axons expressing L1(G4) into their target area. Conceivably, differences in the concentration of axonin-1 and L1(G4), and/or modulatory influences on their specific binding parameters in leading pathways and following axons could represent elements in the control of axonal pathway selection.


2012 ◽  
Vol 132 (7) ◽  
pp. 1892-1900 ◽  
Author(s):  
Dennis Roggenkamp ◽  
Susanne Falkner ◽  
Franz Stäb ◽  
Marlen Petersen ◽  
Martin Schmelz ◽  
...  

2021 ◽  
Vol 22 (11) ◽  
pp. 5499
Author(s):  
Veronica Corsetti ◽  
Carla Perrone-Capano ◽  
Michael Sebastian Salazar Intriago ◽  
Elisabetta Botticelli ◽  
Giancarlo Poiana ◽  
...  

Dorsal root ganglia (DRG) neurons synthesize acetylcholine (ACh), in addition to their peptidergic nature. They also release ACh and are cholinoceptive, as they express cholinergic receptors. During gangliogenesis, ACh plays an important role in neuronal differentiation, modulating neuritic outgrowth and neurospecific gene expression. Starting from these data, we studied the expression of choline acetyltransferase (ChAT) and vesicular ACh transporter (VAChT) expression in rat DRG neurons. ChAT and VAChT genes are arranged in a “cholinergic locus”, and several splice variants have been described. Using selective primers, we characterized splice variants of these cholinergic markers, demonstrating that rat DRGs express R1, R2, M, and N variants for ChAT and V1, V2, R1, and R2 splice variants for VAChT. Moreover, by RT-PCR analysis, we observed a progressive decrease in ChAT and VAChT transcripts from the late embryonic developmental stage (E18) to postnatal P2 and P15 and in the adult DRG. Interestingly, Western blot analyses and activity assays demonstrated that ChAT levels significantly increased during DRG ontogenesis. The modulated expression of different ChAT and VAChT splice variants during development suggests a possible differential regulation of cholinergic marker expression in sensory neurons and confirms multiple roles for ACh in DRG neurons, both in the embryo stage and postnatally.


1997 ◽  
Vol 25 (3) ◽  
pp. 303-309
Author(s):  
Václav Mandys ◽  
Katerina Jirsová ◽  
Jirí Vrana

The neurotoxic effects of seven selected Multicenter Evaluation of In Vitro Cytotoxicity programme chemicals (methanol, ethanol, isopropanol, sodium chloride, potassium chloride, iron [II] sulphate and chloroform) were evaluated in organotypic cultures of chick embryonic dorsal root ganglia (DRG), maintained in a soft agar culture medium. Two growth parameters of neurite outgrowth from the ganglia — the mean radial length of neurites and the area of neurite outgrowth — were used to evaluate the toxicities of the chemicals. Dose-dependent decreases of both parameters were observed in all experiments. IC50 values (the concentration causing 50% inhibition of growth) were calculated from the dose-response curves established at three time-points during culture, i.e. 24, 48 and 72 hours. The lowest toxic effect was observed in cultures exposed to methanol (the IC50 ranging from 580mM to 1020mM). The highest toxic effect was observed in cultures exposed to iron (II) sulphate (the IC50 ranging from 1.2mM to 1.7mM). The results of other recent experiments suggest that organotypic cultures of DRG can be used during in vitro studies on target organ toxicity within the peripheral nervous system. Moreover, these cultures preserve the internal organisation of the tissue, maintain intercellular contacts, and thus reflect the in vitro situation, more precisely than other cell cultures.


Sign in / Sign up

Export Citation Format

Share Document