scholarly journals Connexin46 Is Retained as Monomers in a trans-Golgi Compartment of Osteoblastic Cells

1997 ◽  
Vol 137 (4) ◽  
pp. 847-857 ◽  
Author(s):  
Michael Koval ◽  
James E. Harley ◽  
Elizabeth Hick ◽  
Thomas H. Steinberg

Connexins are gap junction proteins that form aqueous channels to interconnect adjacent cells. Rat osteoblasts express connexin43 (Cx43), which forms functional gap junctions at the cell surface. We have found that ROS 17/2.8 osteosarcoma cells, UMR 106-01 osteosarcoma cells, and primary rat calvarial osteoblastic cells also express another gap junction protein, Cx46. Cx46 is a major component of plasma membrane gap junctions in lens. In contrast, Cx46 expressed by osteoblastic cells was predominantly localized to an intracellular perinuclear compartment, which appeared to be an aspect of the TGN as determined by immunofluorescence colocalization. Hela cells transfected with rat Cx46 cDNA (Hela/Cx46) assembled Cx46 into functional gap junction channels at the cell surface. Both rat lens and Hela/Cx46 cells expressed 53-kD (nonphosphorylated) and 68-kD (phosphorylated) forms of Cx46; however, only the 53-kD form was produced by osteoblasts. To examine connexin assembly, monomers were resolved from oligomers by sucrose gradient velocity sedimentation analysis of 1% Triton X-100–solubilized extracts. While Cx43 was assembled into multimeric complexes, ROS cells contained only the monomer form of Cx46. In contrast, Cx46 expressed by rat lens and Hela/Cx46 cells was assembled into multimers. These studies suggest that assembly and cell surface expression of two closely related connexins were differentially regulated in the same cell. Furthermore, oligomerization may be required for connexin transport from the TGN to the cell surface.

1991 ◽  
Vol 115 (5) ◽  
pp. 1357-1374 ◽  
Author(s):  
L S Musil ◽  
D A Goodenough

We previously demonstrated that the gap junction protein connexin43 is translated as a 42-kD protein (connexin43-NP) that is efficiently phosphorylated to a 46,000-Mr species (connexin43-P2) in gap junctional communication-competent, but not in communication-deficient, cells. In this study, we used a combination of metabolic radiolabeling and immunoprecipitation to investigate the assembly of connexin43 into gap junctions and the relationship of this event to phosphorylation of connexin43. Examination of the detergent solubility of connexin43 in communication-competent NRK cells revealed that processing of connexin43 to the P2 form was accompanied by acquisition of resistance to solubilization in 1% Triton X-100. Immunohistochemical localization of connexin43 in Triton-extracted NRK cells demonstrated that connexin43-P2 (Triton-insoluble) was concentrated in gap junctional plaques, whereas connexin43-NP (Triton-soluble) was predominantly intracellular. Using either a 20 degrees C intracellular transport block or cell-surface protein biotinylation, we determined that connexin43 was transported to the plasma membrane in the Triton-soluble connexin43-NP form. Cell-surface biotinylated connexin43-NP was processed to Triton-insoluble connexin43-P2 at 37 degrees C. Connexin43-NP was also transported to the plasma membrane in communication defective, gap junction-deficient S180 and L929 cells but was not processed to Triton-insoluble connexin43-P2. Taken together, these results demonstrate that gap junction assembly is regulated after arrival of connexin43 at the plasma membrane and is temporally associated with acquisition of insolubility in Triton X-100 and phosphorylation to the connexin43-P2 form.


2004 ◽  
Vol 279 (51) ◽  
pp. 53007-53014 ◽  
Author(s):  
Intaek Lee ◽  
Mhairi A. Skinner ◽  
Hua-bei Guo ◽  
Avinash Sujan ◽  
Michael Pierce

2020 ◽  
Author(s):  
Florent Colomb ◽  
Leila B. Giron ◽  
Leticia Kuri Cervantes ◽  
Tongcui Ma ◽  
Samson Adeniji ◽  
...  

Author(s):  
Mona Aslani ◽  
Arman Ahmadzadeh ◽  
Zahra Aghazadeh ◽  
Majid Zaki-Dizaji ◽  
Laleh Sharifi ◽  
...  

Background: : Based on the encouraging results of phase III clinical trial of β-D-mannuronic acid (M2000) (as a new anti-inflammatory drug) in patients with RA, in this study, we aimed to evaluate the effects of this drug on the expression of chemokines and their receptors in PBMCs of RA patients. Methods:: PBMCs of RA patients and healthy controls were separated and the patients' cells were treated with low, moderate and high doses (5, 25 and 50 μg/mL) of M2000 and optimum dose (1 μg/mL) of diclofenac, as a control in RPMI-1640 medium. Real-time PCR was used for evaluating the mRNA expression of CXCR3, CXCR4, CCR2, CCR5 and CCL2/MCP-1. Cell surface expression of CCR2 was investigated using flow cytometry. Results:: CCR5 mRNA expression reduced significantly, after treatment of the patients' cells with all three doses of M2000 and optimum dose of diclofenac. CXCR3 mRNA expression down-regulated significantly followed by treatment of these cells with moderate and high doses of M2000 and optimum dose of diclofenac. CXCR4 mRNA expression declined significantly after treatment of these cells with moderate and high doses of M2000. CCL2 mRNA expression significantly reduced only followed by treatment of these cells with high dose of M2000, whereas, mRNA and cell surface expressions of CCR2 diminished significantly followed by treatment of these cells with high dose of M2000 and optimum dose of diclofenac. Conclusion:: According to our results, M2000 through the down-regulation of chemokines and their receptors may restrict the infiltration of immune cells into the synovium.


1990 ◽  
Vol 64 (10) ◽  
pp. 4776-4783 ◽  
Author(s):  
M E Andrew ◽  
D B Boyle ◽  
P L Whitfeld ◽  
L J Lockett ◽  
I D Anthony ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document